1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Reflections of ions in electrostatic analyzers: A case study with New Horizons/Solar Wind Around Pluto
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/81/11/10.1063/1.3499367
1.
1.A. L. Hughes and V. Rojansky, Phys. Rev. 34, 284 (1929).
http://dx.doi.org/10.1103/PhysRev.34.284
2.
2.A. D. Johnstone, Rev. Sci. Instrum. 43, 1030 (1972).
http://dx.doi.org/10.1063/1.1685826
3.
3.J. H. Wolfe, R. W. Silva, and M. A. Myers, J. Geophys. Res. 71, 1319 (1966).
http://dx.doi.org/10.1029/JZ071i005p01319
4.
4.G. Paschmann, H. Loidl, P. Obermayer, M. Ertl, R. Laborenz, N. Sckopke, W. Baumjohann, C. W. Carlson, and D. W. Curtis, IEEE Trans. Geosci. Remote Sens. GE-23, 262 (1985).
http://dx.doi.org/10.1109/TGRS.1985.289525
5.
5.D. T. Young, A. G. Ghielmetti, E. G. Shelley, J. A. Marshall, and J. L. Burch, Rev. Sci. Instrum. 58, 501 (1987).
http://dx.doi.org/10.1063/1.1139260
6.
6.D. T. Young, S. J. Bame, M. F. Thomsen, R. H. Martin, J. L. Burch, J. A. Marshall, and B. Reinhard, Rev. Sci. Instrum. 59, 743 (1988).
http://dx.doi.org/10.1063/1.1139821
7.
7.L. Duvet, J. J. Berthelier, J. Illiano, and M. Godefroy, Meas. Sci. Technol. 11, 375 (2000).
http://dx.doi.org/10.1088/0957-0233/11/4/306
8.
8.S. Kasahara, K. Asamura, Y. Saito, T. Takashima, M. Hirahara, and T. Mukai, Rev. Sci. Instrum. 77, 123303 (2006).
http://dx.doi.org/10.1063/1.2405358
9.
9.F. Allegrini, M. I. Desai, R. Livi, S. Livi, D. J. McComas, and B. Randol, Rev. Sci. Instrum. 80, 104502 (2009).
http://dx.doi.org/10.1063/1.3247906
10.
10.H. H. Brongersma, M. Draxler, M. de Ridder, and P. Bauer, Surf. Sci. Rep. 62, 63 (2007).
http://dx.doi.org/10.1016/j.surfrep.2006.12.002
11.
11.D. McComas, F. Allegrini, F. Bagenal, P. Casey, P. Delamere, D. Demkee, G. Dunn, H. Elliott, J. Hanley, K. Johnson, J. Langle, G. Miller, S. Pope, M. Reno, B. Rodriguez, N. Schwadron, P. Valek, and S. Weidner, Space Sci. Rev. 140, 261 (2008).
http://dx.doi.org/10.1007/s11214-007-9205-3
12.
12.G. H. Fountain, D. Y. Kusnierkiewicz, C. B. Hersman, T. S. Herder, T. B. Coughlin, W. C. Gibson, D. A. Clancy, C. C. Deboy, T. A. Hill, J. D. Kinnison, D. S. Mehoke, G. K. Ottman, G. D. Rogers, S. A. Stern, J. M. Stratton, S. R. Vernon, and S. P. Williams, Space Sci. Rev. 140, 23 (2008).
http://dx.doi.org/10.1007/s11214-008-9374-8
13.
13.D. T. Young, R. P. Bowman, R. K. Black, T. L. Booker, P. J. Casey, G. J. Dirks, D. R. Guerrero, K. E. Smith, J. H. Waite, Jr., and M. P. Wüest, in Measurement Techniques in Space Plasmas-Particles, edited by R. F. Pfaff, J. E. Borovsky, and D. T. Young (American Geophysical Union, Washington, DC, 1998), pp. 313318.
14.
14.A. L. Vampola, in Measurement Techniques in Space Plasmas-Particles, edited by R. F. Pfaff, J. E. Borovsky, and D. T. Young (American Geophysical Union, Washington, DC, 1998), pp. 339355.
15.
15.D. R. Linder, A. J. Coates, R. D. Woodliffe, C. Alsop, A. D. Johnstone, M. Grande, A. Preece, B. Narheim, and D. T. Young, in Measurement Techniques in Space Plasmas-Particles, edited by R. F. Pfaff, J. E. Borovsky, and D. T. Young (American Geophysical Union, Washington, DC, 1998), pp. 257267.
16.
16.R. C. Olsen and C. W. Norwood, J. Geophys. Res. 96, 15951 (1991).
http://dx.doi.org/10.1029/91JA00675
17.
17.A. P. Ehiasarian, J. Andersson, and A. Anders, J. Phys. D: Appl. Phys. 43, 275204 (2010).
http://dx.doi.org/10.1088/0022-3727/43/27/275204
18.
18.M. P. Seah, Nucl. Instrum. Methods Phys. Res. B 229, 348 (2005).
http://dx.doi.org/10.1016/j.nimb.2004.12.129
19.
19.M. P. Seah, Nucl. Instrum. Methods Phys. Res. B 239, 286 (2005).
http://dx.doi.org/10.1016/j.nimb.2005.07.178
20.
20.M. P. McCarthy and J. P. McFadden, in Measurement Techniques in Space Plasmas-Particles, edited by R. F. Pfaff, J. E. Borovsky, and D. T. Young (American Geophysical Union, Washington, DC, 1998), pp. 97103.
21.
21.G. Livadiotis and D. J. McComas, J. Geophys. Res., [Space Phys.] 114, A11105 (2009).
http://dx.doi.org/10.1029/2009JA014352
22.
22.V. M. Vasyliunas and G. L. Siscoe, J. Geophys. Res. 81, 1247 (1976).
http://dx.doi.org/10.1029/JA081i007p01247
23.
23.S. A. Fuselier, P. Bochsler, D. Chornay, G. Clark, G. B. Crew, G. Dunn, S. Ellis, T. Friedmann, H. O. Funsten, A. G. Ghielmetti, J. Googins, M. S. Granoff, J. W. Hamilton, J. Hanley, D. Heirtzler, E. Hertzberg, D. Isaac, B. King, U. Knauss, H. Kucharek, F. Kudirka, S. Livi, J. Lobell, S. Longworth, K. Mashburn, D. J. McComas, E. Möbius, A. S. Moore, T. E. Moore, R. J. Nemanich, J. Nolin, M. O’Neal, D. Piazza, L. Peterson, S. E. Pope, P. Rosmarynowski, L. A. Saul, J. R. Scherrer, J. A. Scheer, C. Schlemm, N. A. Schwadron, C. Tillier, S. Turco, J. Tyler, M. Vosbury, M. Wieser, P. Wurz, and S. Zaffke, Space Sci. Rev. 146, 117 (2009).
http://dx.doi.org/10.1007/s11214-009-9495-8
24.
24.J. F. Ziegler, Nucl. Instrum. Methods Phys. Res. B 219–220, 1027 (2004).
http://dx.doi.org/10.1016/j.nimb.2004.01.208
25.
25.D. A. Dahl, Int. J. Mass. Spectrom. 200, 3 (2000).
http://dx.doi.org/10.1016/S1387-3806(00)00305-5
26.
26.A. von Zeerleder, Technology of Light Metals (Elsevier, New York, 1949).
27.
27.D. J. Manura and D. A. Dahl, SIMION™ Version 8.0 User Manual (Scientific Instrument Services, Inc., Ringoes, 2007).
28.
28.R. Ebert, D. McComas, B. Rodriguez, P. Valek, and S. Weidner, Space Sci. Rev. (in press).
29.
29.D. J. McComas, F. Allegrini, J. Baldonado, B. Blake, P. C. Brandt, J. Burch, J. Clemmons, W. Crain, D. Delapp, R. Demajistre, D. Everett, H. Fahr, L. Friesen, H. Funsten, J. Goldstein, M. Gruntman, R. Harbaugh, R. Harper, H. Henkel, C. Holmlund, G. Lay, D. Mabry, D. Mitchell, U. Nass, C. Pollock, S. Pope, M. Reno, S. Ritzau, E. Roelof, E. Scime, M. Sivjee, R. Skoug, T. S. Sotirelis, M. Thomsen, C. Urdiales, P. Valek, K. Viherkanto, S. Weidner, T. Ylikorpi, M. Young, and J. Zoennchen, Space Sci. Rev. 142, 157 (2009).
http://dx.doi.org/10.1007/s11214-008-9467-4
30.
30.H. Winter, J. Phys.: Condens. Matter 8, 10149 (1996).
http://dx.doi.org/10.1088/0953-8984/8/49/009
31.
31.S. Overbury, Nucl. Instrum. Methods 170, 543 (1980).
http://dx.doi.org/10.1016/0029-554X(80)91071-X
32.
32.M. P. Ulmer, W. R. Purcell, Jr., J. E. A. Loughlin, and M. P. Kowalski, Appl. Opt. 23, 4233 (1984).
http://dx.doi.org/10.1364/AO.23.004233
33.
33.J. A. Scheer, P. Wahlström, and P. Wurz, Nucl. Instrum. Methods Phys. Res. B 256, 76 (2007).
http://dx.doi.org/10.1016/j.nimb.2006.11.093
34.
34.J. A. Scheer, P. Wahlström, and P. Wurz, Nucl. Instrum. Methods Phys. Res. B 267, 2571 (2009).
http://dx.doi.org/10.1016/j.nimb.2009.05.016
35.
35.S. M. Ritzau and R. A. Baragiola, Phys. Rev. B 58, 2529 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.2529
36.
36.A. Egidi, R. Marconero, G. Pizzella, and F. Sperli, Rev. Sci. Instrum. 40, 88 (1969).
http://dx.doi.org/10.1063/1.1683757
37.
37.J. W. Rabalais, Principles and Applications of Ion Scattering Spectrometry: Surface Chemical and Structural Analysis (Wiley, New York, 2002).
38.
38.D. J. O’Connor, Mikrochim. Acta 120, 159 (1995).
http://dx.doi.org/10.1007/BF01244429
39.
39.S. S. Medley, A. J. H. Donné, R. Kaita, A. I. Kislyakov, M. P. Petrov, and A. L. Roquemore, Rev. Sci. Instrum. 79, 011101 (2008).
http://dx.doi.org/10.1063/1.2823259
40.
40.H. J. Leisenfelder, R. L. Hickok, J. H. Resnick, T. P. Crowley, and J. G. Schatz, Rev. Sci. Instrum. 63, 4579 (1992).
http://dx.doi.org/10.1063/1.1143674
41.
41.C. A. Ordonez and R. E. Peterkin, J. Nucl. Mater. 228, 201 (1996).
http://dx.doi.org/10.1016/S0022-3115(95)00221-9
42.
42.Y. Podoba, M. Otte, F. Wagner, L. Krupnik, and A. Zhezhera, Rev. Sci. Instrum. 81, 013505 (2010).
http://dx.doi.org/10.1063/1.3280176
43.
43.T. S. Green and G. A. Proca, Rev. Sci. Instrum. 41, 1409 (1970).
http://dx.doi.org/10.1063/1.1684294
44.
44.W. Steckelmacher, J. Phys. E 6, 1061 (1973).
http://dx.doi.org/10.1088/0022-3735/6/11/001
45.
45.L. N. Gall’ and Z. Z. Latypov, At. Energy 92, 135 (2002).
http://dx.doi.org/10.1023/A:1015874605927
http://aip.metastore.ingenta.com/content/aip/journal/rsi/81/11/10.1063/1.3499367
Loading
/content/aip/journal/rsi/81/11/10.1063/1.3499367
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/81/11/10.1063/1.3499367
2010-11-12
2015-08-01

Abstract

Electrostatic analyzers (ESAs), in various forms, are used to measure plasma in a range of applications. In this article, we describe how ions reflect from the interior surfaces of an ESA, the detection of which constitutes a fundamentally nonideal response of ESAs. We demonstrate this effect by comparing laboratory data from a real ESA-based space instrument, the Solar Wind Around Pluto (SWAP) instrument, aboard the NASA New Horizons spacecraft, to results from a model based on quantum mechanical simulations of particles reflected from the instrument’s surfaces combined with simulations of particle trajectories through the instrument’s applied electrostatic fields. Thus, we show, for the first time, how reflected ions in ESAs lead to nonideal effects that have important implications for understanding the data returned by these instruments, as well as for designing new low-background ESA-based instruments. Specifically, we show that the response of SWAP widens considerably below a level of of the peak response. Thus, a direct measurement of a plasma distribution with SWAP will have an energy-dependent background on the order of of the peak of the signal due to that distribution. We predict that this order of magnitude estimate for the background applies to a large number of ESA-based instruments because ESAs operate using a common principle. However, the exact shape of the energy-dependent response will be different for different instruments. The principle of operation is that ions outside the ideal range of energy-per-charge are deflected into the walls of the ESA. Therefore, we propose that a new design paradigm is necessary to mitigate the effect of ion reflections and thus accurately and directly measure the energy spectrum of a plasma using ESAs. In this article, we build a framework for minimizing the effect of ion reflections in the design of new ESAs. Through the use of existing computer simulation software, a design team can use our method to quantify the amount of reflections in their instrument and iteratively change design parameters before fabrication, conserving resources. A possible direction for the new design paradigm is having nonsolid walls of the ESA, already used in some applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/81/11/1.3499367.html;jsessionid=1j8gz07s00za7.x-aip-live-02?itemId=/content/aip/journal/rsi/81/11/10.1063/1.3499367&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Reflections of ions in electrostatic analyzers: A case study with New Horizons/Solar Wind Around Pluto
http://aip.metastore.ingenta.com/content/aip/journal/rsi/81/11/10.1063/1.3499367
10.1063/1.3499367
SEARCH_EXPAND_ITEM