1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Modulated 3D cross-correlation light scattering: Improving turbid sample characterization
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/81/12/10.1063/1.3518961
1.
1. P. Lindner and T. Zemb, Neutrons, X-rays, and Light : Scattering Methods Applied to Soft Condensed Matter, 1st ed. (Elsevier, Amsterdam Boston, 2002).
2.
2. F. Scheffold and R. Cerbino, Curr. Opin. Colloid Interface Sci. 12, 50 (2007).
http://dx.doi.org/10.1016/j.cocis.2007.03.005
3.
3. F. Scheffold and P. Schurtenberger, Soft Mater. 1, 139 (2003).
http://dx.doi.org/10.1081/SMTS-120022461
4.
4. B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, And Physics (Dover Publications, Mineola, N.Y., 2000).
5.
5. W. Brown, Dynamic Light Scattering: The Method and Some Applications. (Clarendon Press; Oxford University Press, Oxford [England], New York, 1993).
6.
6. J. K. G. Dhont, C. G. Dekruif, and A. Vrij, J. Colloid Interface Sci. 105, 539 (1985).
http://dx.doi.org/10.1016/0021-9797(85)90329-7
7.
7. K. Schatzel, J. Mod. Opt. 38, 1849 (1991).
http://dx.doi.org/10.1080/09500349114551951
8.
8. G. D. J. Phillies, J. Chem. Phys. 74, 260 (1981).
http://dx.doi.org/10.1063/1.440884
9.
9. K. N. Pham, A. M. Puertas, J. Bergenholtz, S. U. Egelhaaf, A. Moussaid, P. N. Pusey, A. B. Schofield, M. E. Cates, M. Fuchs, and W. C. K. Poon, Science 296, 104 (2002).
http://dx.doi.org/10.1126/science.1068238
10.
10. C. Urban and P. Schurtenberger, J. Colloid Interface Sci. 207, 150 (1998).
http://dx.doi.org/10.1006/jcis.1998.5769
11.
11. M. Medebach, C. Moitzi, N. Freiberger, and O. Glatter, J. Colloid Interface Sci. 305, 88 (2007).
http://dx.doi.org/10.1016/j.jcis.2006.09.013
12.
12. P. D. Kaplan, V. Trappe, and D. A. Weitz, Appl. Opt. 38, 4151 (1999).
http://dx.doi.org/10.1364/AO.38.004151
13.
13. H. Wiese and D. Horn, J. Chem. Phys. 94, 6429 (1991).
http://dx.doi.org/10.1063/1.460272
14.
14. W. V. Meyer, D. S. Cannell, A. E. Smart, T. W. Taylor, and P. Tin, Appl. Opt. 36, 7551 (1997).
http://dx.doi.org/10.1364/AO.36.007551
15.
15. J. A. Lock, Appl. Opt. 36, 7559 (1997).
http://dx.doi.org/10.1364/AO.36.007559
16.
16. P. Zakharov, S. Bhat, P. Schurtenberger, and F. Scheffold, Appl. Opt. 45, 1756 (2006).
http://dx.doi.org/10.1364/AO.45.001756
17.
17. H. J. Mos, C. Pathmamanoharan, J. K. G. Dhont, and C. G. d. Kruif, J. Chem. Phys. 84, 45 (1986).
http://dx.doi.org/10.1063/1.450161
18.
18. P. N. Segre, W. Vanmegen, P. N. Pusey, K. Schatzel, and W. Peters, J. Mod. Opt. 42, 1929 (1995).
http://dx.doi.org/10.1080/09500349514551681
19.
19. P. N. Pusey, Curr. Opin. Colloid Interface Sci. 4, 177 (1999).
http://dx.doi.org/10.1016/S1359-0294(99)00036-9
20.
20. L. B. Aberle, S. Wiegand, W. Schroer, and W. Staude, in Optical Methods and Physics of Colloidal Dispersions, edited by T. Palberg and M. Ballauff (1997), Vol. 104, pp. 121125.
http://dx.doi.org/10.1007/BFb0110756
21.
21. E. Overbeck, C. Sinn, T. Palberg, and K. Schatzel, Colloids Surf. A-Physicochemical and Engineering Aspects 122, 83 (1997).
http://dx.doi.org/10.1016/S0927-7757(96)03842-3
22.
22. M. Medebach, N. Freiberger, and O. Glatter, Rev. Sci. Instrum. 79, 12 (2008).
http://dx.doi.org/10.1063/1.2947756
http://aip.metastore.ingenta.com/content/aip/journal/rsi/81/12/10.1063/1.3518961
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a, b) Schematic of modulated 3D cross-correlation light scattering instrument showing the two states wherein one of the modulators is activated and one detector is gated. (c) Photo of modulated cross-correlation setup adapted to a commercial 3D DLS instrument from LS Instruments.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) (a) Correlation function comparison demonstrating fourfold improvement of the intercept for modulated 3D cross-correlation vs standard 3D cross-correlation. (b) Frequency dependence of modulated cross-correlation intercept illustrating necessity at higher frequencies of photon detector blanking during the transition time of the intensity modulators.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) Correlation function intercept (a) and extracted hydrodynamic radius (b) as a function of sample turbidity for each of the three correlation methods. Large errors for autocorrelation and improved precision of modulated over standard 3D cross-correlation are apparent. 3D cross measurements in (b) have been slightly shifted horizontally to ease comparison. (c) Linear replot of (b) illustrating excellent agreement of the three correlation methods for dilute samples.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) (a) SLS measurements of turbid and dilute suspensions of 430 nm polystyrene particles, along with a Mie fit to the dilute data. Corrected SLS measurements of the turbid sample using modulated (b) and standard (c) 3D cross-correlation techniques.

Loading

Article metrics loading...

/content/aip/journal/rsi/81/12/10.1063/1.3518961
2010-12-30
2014-04-16

Abstract

Accurate characterization using static light scattering (SLS) and dynamic light scattering (DLS) methods mandates the measurement and analysis of singly scattered light. In turbid samples, the suppression of multiple scattering is therefore required to obtain meaningful results. One powerful technique for achieving this, known as 3D cross-correlation, uses two simultaneous light scattering experiments performed at the same scattering vector on the same sample volume in order to extract only the single scattering information common to both. Here we present a significant improvement to this method in which the two scattering experiments are temporally separated by modulating the incident laser beams and gating the detector outputs at frequencies exceeding the timescale of the system dynamics. This robust modulation scheme eliminates cross-talk between the two beam-detector pairs and leads to a fourfold improvement in the cross-correlation intercept. We measure the dynamic and angular-dependent scattering intensity of turbid colloidal suspensions and exploit the improved signal quality of the modulated 3D cross-correlation DLS and SLS techniques.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/81/12/1.3518961.html;jsessionid=tn5artj8tuv9.x-aip-live-06?itemId=/content/aip/journal/rsi/81/12/10.1063/1.3518961&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Modulated 3D cross-correlation light scattering: Improving turbid sample characterization
http://aip.metastore.ingenta.com/content/aip/journal/rsi/81/12/10.1063/1.3518961
10.1063/1.3518961
SEARCH_EXPAND_ITEM