Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/81/6/10.1063/1.3443096
1.
1.B. Kasemo, Surf. Sci. 500, 656 (2002).
http://dx.doi.org/10.1016/S0039-6028(01)01809-X
2.
2.D. G. Castner and B. D. Ratner, Surf. Sci. 500, 28 (2002).
http://dx.doi.org/10.1016/S0039-6028(01)01587-4
3.
3.Biomaterials Science: An Introduction to Materials in Medicine, edited by B. Ratner, A. Hoffman, F. Schoen, and J. Lemons (Elsevier, New York, 1997).
4.
4.F. M. Geiger, Annu. Rev. Phys. Chem. 60, 61 (2009).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093651
5.
5.Y. R. Shen and V. Ostroverkhov, Chem. Rev. (Washington, D.C.) 106, 1140 (2006).
http://dx.doi.org/10.1021/cr040377d
6.
6.Z. Chen, Y. R. Shen, and G. A. Somorjai, Annu. Rev. Phys. Chem. 53, 437 (2002).
http://dx.doi.org/10.1146/annurev.physchem.53.091801.115126
7.
7.S. Roke, ChemPhysChem 10, 1380 (2009).
http://dx.doi.org/10.1002/cphc.200900138
8.
8.M. B. Raschke and Y. R. Shen, Curr. Opin. Solid State Mater. Sci. 8, 343 (2004).
http://dx.doi.org/10.1016/j.cossms.2005.01.002
9.
9.H. C. Allen, N. N. Casillas-Ituarte, M. R. Sierra-Hernandez, X. Chen, and C. Y. Tang, Phys. Chem. Chem. Phys. 11, 5538 (2009).
http://dx.doi.org/10.1039/b901209e
10.
10.C. S. Tian and Y. R. Shen, Chem. Phys. Lett. 470, 1 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.01.016
11.
11.S. Gopalakrishnan, D. F. Liu, H. C. Allen, M. Kuo, and M. J. Shultz, Chem. Rev. 106, 1155 (2006).
http://dx.doi.org/10.1021/cr040361n
12.
12.G. L. Richmond, Chem. Rev. (Washington, D.C.) 102, 2693 (2002).
http://dx.doi.org/10.1021/cr0006876
13.
13.M. A. Leich and G. L. Richmond, Faraday Discuss. 129, 1 (2005).
http://dx.doi.org/10.1039/b415753m
14.
14.A. J. Hopkins, C. L. McFearin, and G. L. Richmond, Curr. Opin. Solid State Mater. Sci. 9, 19 (2005).
http://dx.doi.org/10.1016/j.cossms.2006.04.001
15.
15.J. Kim, G. Kim, and P. S. Cremer, J. Am. Chem. Soc. 124, 8751 (2002).
http://dx.doi.org/10.1021/ja0263036
16.
16.V. Ostroverkhov, G. A. Waychunas, and Y. R. Shen, Chem. Phys. Lett. 386, 144 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.01.047
17.
17.M. A. Even, C. Chen, J. Wang, and Z. Chen, Macromolecules 39, 9396 (2006).
http://dx.doi.org/10.1021/ma061785h
18.
18.O. M. Mermut, D. C. Philips, R. L. York, K. R. McCrea, R. S. Ward, and G. A. Somorjai, J. Am. Chem. Soc. 128, 3598 (2006).
http://dx.doi.org/10.1021/ja056031h
19.
19.P. L. Hayes, E. H. Chen, J. L. Achtyl, and F. M. Geiger, J. Phys. Chem. A 113, 4269 (2009).
http://dx.doi.org/10.1021/jp810891v
20.
20.P. T. Wilson, L. J. Richter, W. E. Wallace, K. A. Briggman, and J. C. Stephenson, Chem. Phys. Lett. 363, 161 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)01171-5
21.
21.R. L. York, Y. Li, G. J. Holinga, and G. A. Somorjai, J. Phys. Chem. A 113, 2768 (2009).
http://dx.doi.org/10.1021/jp808629r
22.
22.K. A. Becraft and G. L. Richmond, Langmuir 17, 7721 (2001).
http://dx.doi.org/10.1021/la011133g
23.
23.P. L. Hayes, J. N. Malin, C. T. Konek, and F. M. Geiger, J. Phys. Chem. A 112, 660 (2008).
http://dx.doi.org/10.1021/jp076976g
24.
24.M. J. Stein, T. Weidner, K. McCrea, D. G. Castner, and B. D. Ratner, J. Phys. Chem. B 113, 11550 (2009).
http://dx.doi.org/10.1021/jp9015867
25.
25.N. Nishi, D. Hobara, M. Yamamoto, and T. Kakiuchi, Anal. Sci. 19, 887 (2003).
http://dx.doi.org/10.2116/analsci.19.887
26.
26.Y. Nishikawa, T. Nagasawa, and K. Fujiwara, Vib. Spectrosc. 6, 43 (1993).
http://dx.doi.org/10.1016/0924-2031(93)87021-K
27.
27.A. Tadjeddine and F. Vidal, In-Situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis (Elsevier, New York, 2007) Chap. 9, pp. 273298.
http://dx.doi.org/10.1016/B978-044451870-5/50010-5
28.
28.P. Guyot-Sionnest and A. Tadjeddine, Chem. Phys. Lett. 172, 341 (1990).
http://dx.doi.org/10.1016/S0009-2614(90)87124-A
29.
29.A. Peremans, A. Tadjeddine, and P. Guyot-Sionnest, Chem. Phys. Lett. 247, 243 (1995).
http://dx.doi.org/10.1016/0009-2614(95)01221-8
30.
30.S. Baldelli, N. Markovic, P. Ross, Y. -R. Shen, and G. Somorjai, J. Phys. Chem. B 103, 8920 (1999).
http://dx.doi.org/10.1021/jp991649x
31.
31.F. Dederichs, K. A. Friedrich, and W. Daum, J. Phys. Chem. B 104, 6626 (2000).
http://dx.doi.org/10.1021/jp0009148
32.
32.A. Tadjeddine and P. Guyot-Sionnest, Electrochim. Acta 36, 1849 (1991).
http://dx.doi.org/10.1016/0013-4686(91)85055-C
33.
33.T. H. Ong, P. B. Davies, and C. D. Bain, J. Phys. Chem. 97, 12047 (1993).
http://dx.doi.org/10.1021/j100148a034
34.
34.F. Huerta, E. Morallo, C. Quijada, J. L. Vàzquez, and A. Aldaz, Electrochim. Acta 44, 943 (1998).
http://dx.doi.org/10.1016/S0013-4686(98)00197-2
35.
35.B. Bozzini, C. Mele, A. Fanigliulo, B. Busson, F. Vidal, and A. Tadjeddine, J. Electroanal. Chem. 574, 85 (2004).
http://dx.doi.org/10.1016/j.jelechem.2004.08.003
36.
36.M. Tadjeddine, J. -P. Flament, A. L. Rille, and A. Tadjeddine, Surf. Sci. 600, 2138 (2006).
http://dx.doi.org/10.1016/j.susc.2006.02.049
37.
37.W. Q. Zheng, O. Pluchery, and A. Tadjeddine, Surf. Sci. 502–503, 490 (2002).
http://dx.doi.org/10.1016/S0039-6028(01)01997-5
38.
38.W. Zheng and A. Tadjeddine, J. Chem. Phys. 119, 13096 (2003).
http://dx.doi.org/10.1063/1.1628220
39.
39.S. Nihonyanagi, S. Ye, K. Uosaki, L. Dreesen, C. Humbert, P. Thiry, and A. Peremans, Surf. Sci. 573, 11 (2004).
http://dx.doi.org/10.1016/j.susc.2004.04.059
40.
40.Z. D. Schultz, S. K. Shaw, and A. A. Gewirth, J. Am. Chem. Soc. 127, 15916 (2005).
http://dx.doi.org/10.1021/ja0543393
41.
41.H. Noguchi, T. Okada, and K. Uosaki, Faraday Discuss. 140, 125 (2009).
http://dx.doi.org/10.1039/b803640c
42.
42.M. A. Hines, J. A. Todd, and P. Guyot-Sionnest, Langmuir 11, 493 (1995).
http://dx.doi.org/10.1021/la00002a022
43.
43.J. Hedberg, C. Leygraf, K. Cimatu, and S. Baldelli, J. Phys. Chem. C 111, 17587 (2007).
http://dx.doi.org/10.1021/jp075286+
44.
44.D. Qu, B. -C. Kim, and C. -W. J. Lee, J. Phys. Chem. C 114, 497 (2010).
http://dx.doi.org/10.1021/jp908821b
45.
45.D. S. Bethune, A. C. Luntz, J. K. Sass, and D. K. Roe, Surf. Sci. 197, 44 (1988).
http://dx.doi.org/10.1016/0039-6028(88)90572-9
46.
46.H. Noguchi, T. Okada, and K. Uosaki, Electrochim. Acta 53, 6841 (2008).
http://dx.doi.org/10.1016/j.electacta.2008.02.094
47.
47.H. Asanuma, H. Noguchi, K. Uosaki, and H. -Z. Yu, J. Phys. Chem. C 113, 21155 (2009).
http://dx.doi.org/10.1021/jp906607s
48.
48.F. Vidal and A. Tadjeddine, Rep. Prog. Phys. 68, 1095 (2005).
http://dx.doi.org/10.1088/0034-4885/68/5/R03
49.
49.T. Weidner, N. T. Samuela, K. McCrea, L. J. Gamble, R. S. Ward, and D. G. Castnerb, Biointerphases 5, 9 (2010).
http://dx.doi.org/10.1116/1.3317116
50.
50.L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, Opt. Lett. 23, 1594 (1998).
http://dx.doi.org/10.1364/OL.23.001594
51.
51.I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, J. Am. Chem. Soc. 130, 2271 (2008).
http://dx.doi.org/10.1021/ja076708w
52.
52.C. D. Bain, J. Chem. Soc., Faraday Trans. 91, 1281 (1995).
http://dx.doi.org/10.1039/ft9959101281
53.
53.L. Dreesen, C. Humbert, M. Celebi, J. J. Lemaire, A. A. Mani, P. A. Thiry, and A. Peremans, Appl. Phys. B: Lasers Opt. 74, 621 (2002).
http://dx.doi.org/10.1007/s00340-002-0924-6
54.
54.R. Maoz, J. Sagiv, D. Degenhardt, H. Möhwald, and P. Quint, Supramol. Sci. 2, 9 (1995).
http://dx.doi.org/10.1016/0968-5677(96)85635-5
55.
55.M. Skoda, R. Jacobs, S. Zorn, and F. Schreiber, J. Electron Spectrosc. Relat. Phenom. 172, 21 (2009).
http://dx.doi.org/10.1016/j.elspec.2009.02.005
56.
56.W. Wang, J. Xu, X. Liu, Y. Jiang, G. Wang, and X. Lu, Thin Solid Films 365, 116 (2000).
http://dx.doi.org/10.1016/S0040-6090(00)00649-0
57.
57.S. Schilp, N. Ballav, and M. Zharnikov, Angew. Chem., Int. Ed. 47, 6786 (2008).
http://dx.doi.org/10.1002/anie.200801858
58.
58.X. Cheng, H. E. Canavan, M. J. Stein, J. R. Hull, S. J. Kweskin, M. S. Wagner, G. A. Somorjai, D. G. Castner, and B. D. Ratner, Langmuir 21, 7833 (2005).
http://dx.doi.org/10.1021/la050417o
59.
59.M. A. Cole, N. H. Voelcker, H. Thissen, and H. J. Griesser, Biomaterials 30, 1827 (2009).
http://dx.doi.org/10.1016/j.biomaterials.2008.12.026
60.
60.V. Kurz, M. Grunze, and P. Koelsch, ChemPhysChem 11, 1425 (2010).
http://dx.doi.org/10.1002/cphc.200900978
61.
61.C. Howell, R. Schmidt, V. Kurz, and P. Koelsch, Biointerphases 3, FC47 (2008).
http://dx.doi.org/10.1116/1.3064107
62.
62.S. R. Walter and F. M. Geiger, J. Phys. Chem. 1, 9 (2010).
63.
63.C. Yan, M. Zharnikov, A. Gölzhäuser, and M. Grunze, Langmuir 16, 6208 (2000).
http://dx.doi.org/10.1021/la000128u
64.
64.N. Karsi, P. Lang, M. Chehimi, M. Delamar, and G. Horowitz, Langmuir 22, 3118 (2006).
http://dx.doi.org/10.1021/la052677b
65.
65.V. M. Bermudez, A. D. Berry, H. Kim, and A. Piqué, Langmuir 22, 11113 (2006).
http://dx.doi.org/10.1021/la061578a
66.
66.P. M. Armistead and H. H. Thorp, Anal. Chem. 72, 3764 (2000).
http://dx.doi.org/10.1021/ac000051e
http://aip.metastore.ingenta.com/content/aip/journal/rsi/81/6/10.1063/1.3443096
Loading
/content/aip/journal/rsi/81/6/10.1063/1.3443096
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/81/6/10.1063/1.3443096
2010-06-24
2016-07-24

Abstract

Two sample cells designed specifically for sum-frequency-generation (SFG) measurements at the solid/liquid interface were developed: one thin-layer analysis cell allowing measurement of films on reflective metallic surfaces through a micrometer layer of solution and one spectroelectrochemical cell allowing investigation of processes at the indium tin oxide/solution interface. Both sample cells are described in detail and data illustrating the capabilities of each are shown. To further improve measurements at solid/liquid interfaces, the broadband SFG system was modified to include a reference beam which can be measured simultaneously with the sample signal, permitting background correction of SFG spectra in real time. Sensitivity tests of this system yielded a signal-to-noise ratio of 100 at a surface coverage of . Details on data analysis routines, pulse shaping methods of the visible beam, as well as the design of a purging chamber and sample stage setup are presented. These descriptions will be useful to those planning to set up a SFG spectrometer or seeking to optimize their own SFG systems for measurements of solid/liquid interfaces.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/81/6/1.3443096.html;jsessionid=_U8R_3xO8lIxCGnhyeOiPd8p.x-aip-live-06?itemId=/content/aip/journal/rsi/81/6/10.1063/1.3443096&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/81/6/10.1063/1.3443096&pageURL=http://scitation.aip.org/content/aip/journal/rsi/81/6/10.1063/1.3443096'
Right1,Right2,Right3,