1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Single-molecule binding experiments on long time scales
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/81/8/10.1063/1.3473936
1.
1.P. V. Cornish and T. Ha, ACS Chem. Biol. 2, 53 (2007).
http://dx.doi.org/10.1021/cb600342a
2.
2.N. G. Walter, C. Y. Huang, A. J. Manzo, and M. A. Sobhy, Nat. Methods 5, 475 (2008).
http://dx.doi.org/10.1038/nmeth.1215
3.
3.X. Zhuang, Annu. Rev. Biophys. 34, 399 (2005).
http://dx.doi.org/10.1146/annurev.biophys.34.040204.144641
4.
4.M. A. Ditzler, E. A. Aleman, D. Rueda, and N. G. Walter, Biopolymers 87, 302 (2007).
http://dx.doi.org/10.1002/bip.20819
5.
5.D. Axelrod, Methods Enzymol. 361, 1 (2003).
http://dx.doi.org/10.1016/S0076-6879(03)61003-7
6.
6.T. Ha, I. Rasnik, W. Cheng, H. P. Babcock, G. H. Gauss, T. M. Lohman, and S. Chu, Nature (London) 419, 638 (2002).
http://dx.doi.org/10.1038/nature01083
7.
7.J. R. Kuhn and T. D. Pollard, Biophys. J. 88, 1387 (2005).
http://dx.doi.org/10.1529/biophysj.104.047399
8.
8.J. C. Russ, The Image Processing Handbook (CRC, Boca Raton, 2002).
http://dx.doi.org/10.1201/9781420040760
9.
9.D. Blair and E. Dufresne, The Matlab Particle Tracking Code Repository, available at: http://physics.georgetown.edu/matlab/.
10.
10.C. E. Aitken, R. A. Marshall, and J. D. Puglisi, Biophys. J. 94, 1826 (2008).
http://dx.doi.org/10.1529/biophysj.107.117689
11.
11.I. Rasnik, S. A. McKinney, and T. Ha, Nat. Methods 3, 891 (2006).
http://dx.doi.org/10.1038/nmeth934
12.
12.T. Cordes, J. Vogelsang, and P. Tinnefeld, J. Am. Chem. Soc. 131, 5018 (2009).
http://dx.doi.org/10.1021/ja809117z
13.
13.P. V. Patil and D. P. Ballou, Anal. Biochem. 286, 187 (2000).
http://dx.doi.org/10.1006/abio.2000.4802
14.
14.S. J. Sofia, V. V. Premnath, and E. W. Merrill, Macromolecules 31, 5059 (1998).
http://dx.doi.org/10.1021/ma971016l
15.
15.M. L. Visnapuu, D. Duzdevich, and E. C. Greene, Mol. Biosyst. 4, 394 (2008).
http://dx.doi.org/10.1039/b800444g
16.
16.M. P. Elenko, J. W. Szostak, and A. M. van Oijen, J. Am. Chem. Soc. 131, 9866 (2009).
http://dx.doi.org/10.1021/ja901880v
17.
17.D. S. Wilson and J. W. Szostak, Annu. Rev. Biochem. 68, 611 (1999).
http://dx.doi.org/10.1146/annurev.biochem.68.1.611
18.
18.R. K. Montange and R. T. Batey, Annu. Rev. Biophys. 37, 117 (2008).
19.
19.J. H. Davis and J. W. Szostak, Proc. Natl. Acad. Sci. U.S.A. 99, 11616 (2002).
http://dx.doi.org/10.1073/pnas.182095699
20.
20.J. M. Carothers, S. C. Oestreich, J. H. Davis, and J. W. Szostak, J. Am. Chem. Soc. 126, 5130 (2004).
http://dx.doi.org/10.1021/ja031504a
21.
21.J. M. Carothers, S. C. Oestreich, and J. W. Szostak, J. Am. Chem. Soc. 128, 7929 (2006).
http://dx.doi.org/10.1021/ja060952q
22.
22.W. A. Hendrickson, A. Pahler, J. L. Smith, Y. Satow, E. A. Merritt, and R. P. Phizackerley, Proc. Natl. Acad. Sci. U.S.A. 86, 2190 (1989).
http://dx.doi.org/10.1073/pnas.86.7.2190
23.
23.H. P. Lu, L. Xun, and X. S. Xie, Science 282, 1877 (1998).
http://dx.doi.org/10.1126/science.282.5395.1877
24.
24.B. P. English, W. Min, A. M. van Oijen, K. T. Lee, G. Luo, H. Sun, B. J. Cherayil, S. C. Kou, and X. S. Xie, Nat. Chem. Biol. 2, 87 (2006).
http://dx.doi.org/10.1038/nchembio759
25.
25.G. J. Schutz, W. Trabesinger, and T. Schmidt, Biophys. J. 74, 2223 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)77931-7
26.
26.A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, Science 300, 2061 (2003).
http://dx.doi.org/10.1126/science.1084398
27.
27.M. Bates, B. Huang, and X. Zhuang, Curr. Opin. Chem. Biol. 12, 505 (2008).
http://dx.doi.org/10.1016/j.cbpa.2008.08.008
28.
28.M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
http://dx.doi.org/10.1126/science.1079700
29.
29.A. M. van Oijen, P. C. Blainey, D. J. Crampton, C. C. Richardson, T. Ellenberger, and X. S. Xie, Science 301, 1235 (2003).
http://dx.doi.org/10.1126/science.1084387
http://aip.metastore.ingenta.com/content/aip/journal/rsi/81/8/10.1063/1.3473936
Loading
/content/aip/journal/rsi/81/8/10.1063/1.3473936
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/81/8/10.1063/1.3473936
2010-08-27
2014-12-21

Abstract

We describe an approach for performing single-molecule binding experiments on time scales from hours to days, allowing for the observation of slower kinetics than have been previously investigated by single-molecule techniques. Total internal reflection fluorescence microscopy is used to image the binding of labeled ligand to molecules specifically coupled to the surface of an optically transparent flow cell. Long-duration experiments are enabled by ensuring sufficient positional, chemical, thermal, and imagestability. Principal components of this experimental stability include illumination timing, solution replacement, and chemical treatment of solution to reduce photodamage and photobleaching; and autofocusing to correct for spatial drift.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/81/8/1.3473936.html;jsessionid=dt3fg4gqdpidb.x-aip-live-06?itemId=/content/aip/journal/rsi/81/8/10.1063/1.3473936&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Single-molecule binding experiments on long time scales
http://aip.metastore.ingenta.com/content/aip/journal/rsi/81/8/10.1063/1.3473936
10.1063/1.3473936
SEARCH_EXPAND_ITEM