1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Invited Review Article: Single-photon sources and detectors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/82/7/10.1063/1.3610677
1.
1. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley-Interscience, New York, 1997).
2.
2. R. Loudon, The Quantum Theory of Light (Oxford University Press, New York, 2000).
3.
3. M. Planck, Verh. Dtsch. Phys. Ges. 2, 202 (1900).
4.
4. M. Planck, Verh. Dtsch. Phys. Ges. 2, 237 (1900).
5.
5. D. ter Haar, The Old Quantum Theory (Pergamon, Oxford, 1967).
6.
6. A. Einstein, Ann. Phys. 17, 132 (1905).
http://dx.doi.org/10.1002/andp.19053220607
7.
7. A. B. Arons and M. B. Peppard, Am. J. Phys. 33, 367 (1965).
http://dx.doi.org/10.1119/1.1971542
8.
8. A. H. Compton, Phys. Rev. 21, 483 (1923).
http://dx.doi.org/10.1103/PhysRev.21.483
9.
9. G. Lewis, Nature (London) 118, 874 (1926).
http://dx.doi.org/10.1038/118874a0
10.
10. P. A.M. Dirac, Proc. R. Soc. London 114, 243 (1927).
http://dx.doi.org/10.1098/rspa.1927.0039
11.
11. E. Fermi, Rev. Mod. Phys. 4, 87 (1932).
http://dx.doi.org/10.1103/RevModPhys.4.87
12.
12. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).
13.
13. R. Glauber, Rev. Mod. Phys. 78, 1267 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.1267
14.
14. Technical Report on Quantum Cryptography Technology Experts Panel, Advanced Research and Development Activity (ARDA), 2004, see http://qist.lanl.gov.
15.
15. A. Ekert, N. Gisin, B. Huttner, H. Inamori, and H. Weinfurter, in The Physics of Quantum Information, edited by D. Bouwmeester, A. Ekert, and A. Zeilinger (Springer, Berlin, 2000).
16.
16. P. Shor, Proceedings of 35th Annual Symposium on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, CA, 1994), pp. 124134.
17.
17. C. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York, 1984), pp. 175179.
18.
18. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.661
19.
19. C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.3121
20.
20. H. Inamori, N. Lütkenhaus, and D. Mayers, Eur. Phys. J. D 41, 599 (2007).
http://dx.doi.org/10.1140/epjd/e2007-00010-4
21.
21. D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, Quantum Inf. Comput. 4, 325 (2004).
22.
22. W.-Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.057901
23.
23. X.-B. Wang, Phys. Rev. Lett. 94, 230503 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.230503
24.
24. X. Ma, B. Qi, Y. Zhao, and H. Lo, Phys. Rev. A 72, 012326 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.012326
25.
25. C. Bennett, G. Brassard, and J. Robert, SIAM J. Comput. 17, 210 (1988).
http://dx.doi.org/10.1137/0217014
26.
26. C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer, IEEE Trans. Inf. Theory 41, 1915 (1995).
http://dx.doi.org/10.1109/18.476316
27.
27. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, Phys. Rev. Lett. 77, 2818 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.2818
28.
28. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.145
29.
29. H. J. Briegel, W. Dur, S. J. van Enk, J. I. Cirac, and P. Zoller, in The Physics of Quantum Information, edited by D. Bouwmeester, A. Ekert, and A. Zeilinger (Springer, Berlin, 2000).
30.
30. L. Duan, M. Lukin, J. Cirac, and P. Zoller, Nature (London) 414, 413 (2001).
http://dx.doi.org/10.1038/35106500
31.
31. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 98, 190503 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.190503
32.
32. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, Rev. Mod. Phys. 83, 33 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.33
33.
33. N. Sangouard, C. Simon, B. Zhao, Y.-A. Chen, H. de Riedmatten, J.-W. Pan, and N. Gisin, Phys. Rev. A 77, 062301 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.062301
34.
34. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wooters, Phys. Rev. Lett. 70, 1895 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.1895
35.
35. J. Rarity, P. Owens, and P. Tapster, J. Mod. Opt. 41, 2435 (1994).
http://dx.doi.org/10.1080/09500349414552281
36.
36. A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden, J. Mod. Opt. 47, 595 (2000).
http://dx.doi.org/10.1080/09500340008233380
37.
37. A. Migdall and J. Dowling, J. Mod. Opt. 51, 1265 (2004).
http://dx.doi.org/10.1080/09500340408235271
38.
38. T. Isoshima, Y. Isojima, K. Kikuchi, K. Nagai, and H. Nakagawa, Rev. Sci. Inst. 66, 2922 (1995).
http://dx.doi.org/10.1063/1.1145578
39.
39. U. Lieberwirth, J. Arden-Jacob, K. H. Drexhage, D. P. Herten, R. Muller, M. Neumann, A. Schulz, S. Siebert, G. Sagner, S. Klingel, M. Sauer, and J. Wolfrum, Anal. Chem. 70, 4771 (1998).
http://dx.doi.org/10.1021/ac980230k
40.
40. J.-P. Knemeyer, N. Marme, and M. Sauer, Anal. Chem. 72, 3717 (2000).
http://dx.doi.org/10.1021/ac000024o
41.
41. D. N. Gavrilov, B. Gorbovitski, M. Gouzman, G. Gudkov, A. Stepoukhovitch, V. Ruskovoloshin, A. Tsuprik, G. Tyshko, O. Bilenko, O. Kosobokova, S. Luryi, and V. Gorfinkel, Electrophoresis 24, 1184 (2003).
http://dx.doi.org/10.1002/elps.200390152
42.
42. I. Rech, A. Restelli, S. Cova, M. Ghioni, M. Chiari, and M. Cretich, Sens. Actuators B 100, 158 (2004).
http://dx.doi.org/10.1016/j.snb.2003.12.073
43.
43. J.-P. Knemeyer, N. Marme, and M. Sauer, Science 283, 1676 (1999).
http://dx.doi.org/10.1126/science.283.5408.1676
44.
44. A. Berglund, A. Doherty, and H. Mabuchi, Phys. Rev. Lett. 89, 068101 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.068101
45.
45. K. Suhling, P. French, and D. Phillips, Photochem. Photobiol. Sci. 4, 13 (2005).
http://dx.doi.org/10.1039/b412924p
46.
46. T. McIlrath, R. Hudson, A. Aikin, and T. Wilkerson, Appl. Opt. 18, 316 (1979).
http://dx.doi.org/10.1364/AO.18.000316
47.
47. M. Viterbini, A. Adriani, and G. Didonfrancesco, Rev. Sci. Inst. 58, 1833 (1987).
http://dx.doi.org/10.1063/1.1139528
48.
48. S. Pellegrini, G. Buller, J. Smith, A. Wallace, and S. Cova, Meas. Sci. Technol. 11, 712 (2000).
http://dx.doi.org/10.1088/0957-0233/11/6/314
49.
49. S. Personick, Bell Syst. Tech. J. 56, 355 (1977).
http://dx.doi.org/10.1109/PROC.1977.10808
50.
50. B. Levine, C. Bethea, and J. Campbell, Appl. Phys. Lett. 46, 333 (1985).
http://dx.doi.org/10.1063/1.95622
51.
51. G. Ripamonti, M. Ghioni, and S. Vanoli, Electron. Lett. 26, 1569 (1990).
http://dx.doi.org/10.1049/el:19901007
52.
52. A. Lacaita, P. Francese, S. Cova, and G. Riparmonti, Opt. Lett. 18, 1110 (1993).
http://dx.doi.org/10.1364/OL.18.001110
53.
53. F. Scholder, J. Gautier, M. Wegmuller, and N. Gisin, Opt. Commun. 213, 57 (2002).
http://dx.doi.org/10.1016/S0030-4018(02)02053-9
54.
54. A. Wegmuller, F. Scholder, and N. Gisin, J. Lightwave Technol. 22, 390 (2004).
http://dx.doi.org/10.1109/JLT.2004.824355
55.
55. M. Legre, R. Thew, H. Zbinden, and N. Gisin, Opt. Express 15, 8237 (2007).
http://dx.doi.org/10.1364/OE.15.008237
56.
56. J. Kash, J. Tsang, D. Knebel, and D. Vallett, in ISTFA ‘98: Proceedings Of The 24TH International Symposium For Testing And Failure Analysis (American Technical Publishers, 1998), pp. 483488.
57.
57. J. Tsang, J. Kash, and D. Vallett, IBM J. Res. Dev. 44, 583 (2000).
http://dx.doi.org/10.1147/rd.444.0583
58.
58. F. Stellari, F. Zappa, S. Cova, C. Porta, and J. Tsang, IEEE Trans. Electron Devices 48, 2830 (2001).
http://dx.doi.org/10.1109/16.974711
59.
59. N. Goldblatt, M. Leibowitz, and W. Lo, Microelectron. Reliab. 41, 1507 (2001).
http://dx.doi.org/10.1016/S0026-2714(01)00154-8
60.
60. F. Stellari, A. Tosi, F. Zappa, and S. Cova, IEEE Trans. Instrum. Meas. 53, 163 (2004).
http://dx.doi.org/10.1109/TIM.2003.822195
61.
61. S. Polonsky and K. Jenkins, IEEE Electron Device Lett. 25, 208 (2004).
http://dx.doi.org/10.1109/LED.2004.825192
62.
62. S. Soper, Q. Mattingly, and P. Vegunta, Anal. Chem. 65, 740 (1993).
http://dx.doi.org/10.1021/ac00054a015
63.
63. L.-Q. Li and L. Davis, Rev. Sci. Inst. 64, 1524 (1993).
http://dx.doi.org/10.1063/1.1144463
64.
64. I. Rech, G. Luo, M. Ghioni, H. Yang, X. S. Xie, and S. Cova, IEEE J. Sel. Top. Quant. Electron. 10, 788 (2004).
http://dx.doi.org/10.1109/JSTQE.2004.833975
65.
65. M. Wahl, F. Koberling, M. Patting, H. Rahn, and R. Erdmann, Curr. Pharm. Biotechnol. 5, 299 (2004).
http://dx.doi.org/10.2174/1389201043376841
66.
66. M. Gosch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, J. Biomed. Opt. 9, 913 (2004).
http://dx.doi.org/10.1117/1.1781668
67.
67. X. Michalet, O. H.W. Siegmund, J. V. Vallerga, P. Jelinsky, J. E. Millaud, and S. Weiss, J. Mod. Opt. 54, 239 (2007).
http://dx.doi.org/10.1080/09500340600769067
68.
68. X. Michalet, R. A. Colyer, J. Antelman, O. H.W. Siegmund, A. Tremsin, J. V. Vallerga, and S. Weiss, Curr. Pharm. Biotechnol. 10, 543 (2009).
http://dx.doi.org/10.2174/138920109788922100
69.
69. S. Felekyan, R. Kühnemuth, V. Kudryavtsev, C. Sandhagen, W. Becker, and C. A. M. Seidel, Rev. Sci. Instr. 76, 083104 (2005).
http://dx.doi.org/10.1063/1.1946088
70.
70. A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. D. Mora, F. Zappa, and S. Cova, Phys. Rev. Lett. 100, 138101 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.138101
71.
71. V. C. Spanoudaki, A. B. Mann, A. N. Otte, I. Konorov, I. Torres-Espallardo, S. Paul, and S. I. Ziegler, J. Inst. 2, 12002 (2007).
http://dx.doi.org/10.1088/1748-0221/2/12/P12002
72.
72. D. Klyshko, Kvantovaya Elektronika 4, 1056 (1977)
72.D. Klyshko, [Sov. J. Quantum Elect. 7, 591 (1977)].
http://dx.doi.org/10.1070/QE1977v007n05ABEH012567
73.
73. A. Malygin, A. Penin, and A. Sergienko, JETP Lett. 33, 477 (1981) [http://www.jetpletters.ac.ru/ps/1510/article_23064.pdf].
74.
74. A. Migdall, R. Datla, A. Sergienko, J. Orszak, and Y. Shih, Appl. Opt. 37, 3455 (1998).
http://dx.doi.org/10.1364/AO.37.003455
75.
75. A. Migdall, E. Dauler, A. Muller, and A. Sergienko, Anal. Chim. Acta 380, 311 (1999).
http://dx.doi.org/10.1016/S0003-2670(98)00685-0
76.
76. M. Ware and A. Migdall, J. Mod. Opt. 51, 1549 (2004).
http://dx.doi.org/10.1080/09500340410001670910
77.
77. G. Brida, M. Genovese, M. Gramegna, M. Rastello, M. Chekhova, and L. Krivitsky, J. Opt. Soc. Am. B 22, 488 (2005).
http://dx.doi.org/10.1364/JOSAB.22.000488
78.
78. S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, Metrologia 43, S56 (2006).
http://dx.doi.org/10.1088/0026-1394/43/2/S12
79.
79. G. Brida, M. Genovese, and M. Gramegna, Laser Phys. Lett. 3, 115 (2006).
http://dx.doi.org/10.1002/lapl.200510077
80.
80. S. V. Polyakov and A. L. Migdall, Opt. Express 15, 1390 (2007).
http://dx.doi.org/10.1364/OE.15.001390
81.
81. S. A. Castelletto and R. E. Scholten, Eur. Phys. J.: Appl. Phys. 41, 181 (2008).
http://dx.doi.org/10.1051/epjap:2008029
82.
82. G. Hungerford and D. Birch, Meas. Sci. Technol. 7, 121 (1996).
http://dx.doi.org/10.1088/0957-0233/7/2/002
83.
83. P. Yao, V. S.C. MangaRao, and S. Hughes, Laser Photonics Rev. 4, 499 (2010).
http://dx.doi.org/10.1002/lpor.200810081
84.
84. K. Greulich and E. Thiel, Single Mol. 2, 5 (2001).
http://dx.doi.org/10.1002/1438-5171(200103)2:1<5::AID-SIMO5>3.0.CO;2-9
85.
85. A. Kuhn and D. Ljunggren, Contemp. Phys. 51, 289 (2010).
http://dx.doi.org/10.1080/00107511003602990
86.
86. B. Lounis and M. Orrit, Rep. Prog. Phys. 68, 1129 (2005).
http://dx.doi.org/10.1088/0034-4885/68/5/R04
87.
87. M. Oxborrow and A. Sinclair, Contemp. Phys. 46, 173 (2005).
http://dx.doi.org/10.1080/00107510512331337936
88.
88. D. Renker and E. Lorenz, J. Instrum. 4, P04004 (2009).
http://dx.doi.org/10.1088/1748-0221/4/04/P04004
89.
89. H. Hertz, Ann. Phys. Chem. 31, 983 (1887).
http://dx.doi.org/10.1002/andp.18872670827
90.
90. J. Elster and H. Geitel, Ann. Phys. 284, 625 (1893).
http://dx.doi.org/10.1002/andp.18932840405
91.
91. H. Iams and B. Salzberg, Proc. IRE 23, 55 (1935).
http://dx.doi.org/10.1109/JRPROC.1935.227243
92.
92. V. Zworykin, G. Morton, and L. Malter, Proc. IRE 24, 351 (1935).
http://dx.doi.org/10.1109/JRPROC.1936.226435
93.
93. L. A. Kubetsky, Proc. Inst. Radio Eng. 254, 421 (1937).
http://dx.doi.org/10.1109/JRPROC.1937.229045
94.
94. K. O. Kiepenheuer, Z. Phys. 107, 145 (1937).
http://dx.doi.org/10.1007/BF01330356
95.
95. Z. Bay, Nature (London) 141, 1011 (1938).
http://dx.doi.org/10.1038/1411011a0
96.
96. J. S. Allen, Phys. Rev. 55, 966971 (1939).
http://dx.doi.org/10.1103/PhysRev.55.966
97.
97. R. McIntyre, J. Appl. Phys. 32, 983 (1961).
http://dx.doi.org/10.1063/1.1736199
98.
98. D. E. Groom, Nucl. Instrum. Methods Phys. Res. 219, 141 (1984).
http://dx.doi.org/10.1016/0167-5087(84)90146-7
99.
99. S. Pellegrini, R. E. Warburton, L. J.J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P.R. David, S. Cova, M. J. Robertson, and G. S. Buller, IEEE J. Quant. Electron. 42, 071116 (2006).
http://dx.doi.org/10.1109/JQE.2006.871067
100.
100. A. Tosi, A. D. Mora, F. Zappa, and S. Cova, J. Mod. Opt. 56, 299 (2009).
http://dx.doi.org/10.1080/09500340802263075
101.
101. X. Jiang, M. A. Itzler, R. Ben-Michael, and K. Slomkowski, IEEE J. Sel. Top. Quantum Electron. 13, 895 (2007).
http://dx.doi.org/10.1109/JSTQE.2007.903001
102.
102. R. Warburton, M. Itzler, and G. Buller, Electron. Lett. 45, 996 (2009).
http://dx.doi.org/10.1049/el.2009.1508
103.
103. R. Alleaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, New J. Phys. 6, 92 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/092
104.
104. T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, New J. Phys. 6, 98 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/098
105.
105. E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer and J.-F. Roch, New J. Phys. 9, 434 (2007).
http://dx.doi.org/10.1088/1367-2630/9/12/434
106.
106. S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamato, and Y. Arakawa, Nature Mater. 5, 887 (2006).
http://dx.doi.org/10.1038/nmat1763
107.
107. A. J. Shields, Nature Photon. 1, 215 (2007).
http://dx.doi.org/10.1038/nphoton.2007.46
108.
108. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, Nature Photon. 1, 704 (2007).
http://dx.doi.org/10.1038/nphoton.2007.227
109.
109. M. Hennrich, T. Legero, A. Kuhn, and G. Rempe, New J. Phys. 6, 86 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/086
110.
110. C. Maurer, C. Becher, C. Russo, J. Eschner, and R. Blatt, New J. Phys. 6, 94 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/094
111.
111. M. Steiner, A. Hartschuh, R. Korlacki, and A. J. Meixner, Appl. Phys. Lett. 90, 183122 (2007).
http://dx.doi.org/10.1063/1.2736294
112.
112. S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, and J.-W. Pan, Phys. Rev. Lett. 97, 173004 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.173004
113.
113. E. Waks, E. Diamanti, and Y. Yamamoto, New J. Phys. 8, 4 (2006).
http://dx.doi.org/10.1088/1367-2630/8/1/004
114.
114. A. Soujaeff, T. Nishioka, T. Hasegawa, S. Takeuchi, T. Tsurumaru, K. Sasaki, and M. Matsui, Opt. Express 15, 726 (2007).
http://dx.doi.org/10.1364/OE.15.000726
115.
115. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, Phys. Rev. Lett. 93, 093601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.093601
116.
116. J. Fan and A. Migdall, Opt. Express 15, 2915 (2007).
http://dx.doi.org/10.1364/OE.15.002915
117.
117. E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, Phys. Rev. A 78, 013844 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.013844
118.
118. A. Hartschuh, H. N. Pedrosa, J. Peterson, L. Huang, P. Anger, H. Qian, A. J. Meixner, M. Steiner, L. Novotny, and T. D. Krauss, Chem. Phys. Chem. 6, 1 (2005).
http://dx.doi.org/10.1002/cphc.200400408
119.
119. A. Hogele, C. Galland, M. Winger, and A. Imamoglu, Phys. Rev. Lett. 100, 217401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.217401
120.
120. T. B. Pittman, J. D. Franson, and B. C. Jacobs, New J. Phys. 9, 195 (2007).
http://dx.doi.org/10.1088/1367-2630/9/6/195
121.
121. B. C. Jacobs, T. B. Pittman, and J. D. Franson, Phys. Rev. A 74, 010303R (2006).
http://dx.doi.org/10.1103/PhysRevA.74.010303
122.
122. A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47, 460 (1981).
http://dx.doi.org/10.1103/PhysRevLett.47.460
123.
123. P. G. Kwiat and R. Y. Chiao, Phys. Rev. Lett. 66, 588 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.588
124.
124. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, New J. Phys. 6, 163 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/163
125.
125. Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z.-F. Han, G.-C. Guo, and A. Karlsson, Phys. Rev. Lett. 100, 090501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.090501
126.
126. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, Opt. Express 15, 15377 (2007).
http://dx.doi.org/10.1364/OE.15.015377
127.
127. T. Zhong, X. Hu, F. N.C. Wong, K. K. Berggren, T. D. Roberts, and P. Battle, Opt. Lett. 35, 1392 (2010).
http://dx.doi.org/10.1364/OL.35.001392
128.
128. S. Takeuchi, R. Okamoto, and K. Sasaki, Appl. Opt. 43, 5708 (2004).
http://dx.doi.org/10.1364/AO.43.005708
129.
129. G. Brida, I. P. Degiovanni, M. Genovese, A. Migdall, F. Piacentini, S. V. Polyakov, and I. R. Berchera, Opt. Express 19, 1484 (2011).
http://dx.doi.org/10.1364/OE.19.001484
130.
130. X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger(2010), see http://arxiv.org/PS_cache/arxiv/pdf/1007/1007.4798v1.pdf.
131.
131. S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, Opt. Express 16, 9966 (2008).
http://dx.doi.org/10.1364/OE.16.009966
132.
132. B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, Opt. Express 17, 23589 (2009).
http://dx.doi.org/10.1364/OE.17.023589
133.
133. A. Ling, J. Chen, J. Fan, and A. Migdall, Opt. Express 17, 21302 (2009).
http://dx.doi.org/10.1364/OE.17.021302
134.
134. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S.-i. Itabashi, Appl. Phys. Lett. 91, 201108 (2007).
http://dx.doi.org/10.1063/1.2814040
135.
135. S. G. Lukishova, A. W. Schmid, A. J. McNamara, R. W. Boyd, and J. Carlos R. Stroud, IEEE J. Sel. Top. Quantum Electron. 9, 1512 (2003).
http://dx.doi.org/10.1109/JSTQE.2003.820944
136.
136. R. Alleaume, F. Treussart, J.-M. Courty, and J.-F. Roch, New J. Phys. 6, 85 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/085
137.
137. S. G. Lukishova, A. W. Schmidz, C. M. Supranowitzy, N. Lippa, A. J. Mcnamara, R. W. Boyd, and J. C. R. Stroud, J. Mod. Opt. 51, 1535 (2004).
http://dx.doi.org/10.1080/09500340410001674439
138.
138. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, Phys. Rev. Lett. 89, 187901 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.187901
139.
139. X. Brokmann, E. Giacobino, M. Dahan, and J. Hermier, Appl. Phys. Lett. 85, 712 (2004).
http://dx.doi.org/10.1063/1.1775280
140.
140. A. J. Bennett, D. C. Unitt, P. Atkinson, D. A. Ritchie, and A. J. Shields, Opt. Express 13, 50 (2005).
http://dx.doi.org/10.1364/OPEX.13.000050
141.
141. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, Nature (London) 431, 1075 (2004).
http://dx.doi.org/10.1038/nature02961
142.
142. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, Science 303, 1992 (2004).
http://dx.doi.org/10.1126/science.1095232
143.
143. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, Nat. Phys. 3, 253 (2007).
http://dx.doi.org/10.1038/nphys569
144.
144. C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, Phys. Rev. Lett. 92, 213601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.213601
145.
145. D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, T. A.B. Kennedy, and A. Kuzmich, Phys. Rev. Lett. 97, 013601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.013601
146.
146. P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, Phys. Rev. Lett. 105, 253601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.253601
147.
147. R. J. Glauber, Phys. Rev. 130, 2529 (1963).
http://dx.doi.org/10.1103/PhysRev.130.2529
148.
148. R. J. Glauber, Phys. Rev. 131, 2766 (1963).
http://dx.doi.org/10.1103/PhysRev.131.2766
149.
149. R. Hanbury-Brown and R. Q. Twiss, Proc. R. Soc. London, Ser. A 242, 300 (1957).
http://dx.doi.org/10.1098/rspa.1957.0177
150.
150. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, Science 290, 2282 (2000).
http://dx.doi.org/10.1126/science.290.5500.2282
151.
151. C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, Nature (London) 419, 594 (2002).
http://dx.doi.org/10.1038/nature01086
152.
152. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, Science 295, 102 (2002).
http://dx.doi.org/10.1126/science.1066790
153.
153. V. Zwiller, T. Aichele, W. Seifert, J. Persson, and O. Benson, Appl. Phys. Lett. 82, 1509 (2003).
http://dx.doi.org/10.1063/1.1558952
154.
154. J. Kim, O. Benson, H. Kan, and Y. Yamamoto, Nature (London) 397, 500 (1999).
http://dx.doi.org/10.1038/17295
155.
155. F. D. Martini, G. D. Giuseppe, and M. Marrocco, Phys. Rev. Lett. 76, 900 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.900
156.
156. C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, Phys. Rev. Lett. 83, 2722 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.2722
157.
157. B. Lounis and W. E. Moerner, Nature (London) 407, 491 (2000).
http://dx.doi.org/10.1038/35035032
158.
158. A. Kuhn, M. Hennrich, and G. Rempe, Phys. Rev. Lett. 89, 067901 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.067901
159.
159. B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, Nature (London) 428, 153 (2004).
http://dx.doi.org/10.1038/nature02377
160.
160. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, Phys. Rev. Lett. 85, 290 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.290
161.
161. A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, Phys. Rev. A 64, 061802 (2001).
http://dx.doi.org/10.1103/PhysRevA.64.061802
162.
162. T. Wilk, S. C. Webster, H. P. Specht, G. Rempe, and A. Kuhn, Phys. Rev. Lett. 98, 063601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.063601
163.
163. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, Science 319, 1062 (2008).
http://dx.doi.org/10.1126/science.1152261
164.
164. T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, Phys. Rev. Lett. 102, 083601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.083601
165.
165. U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, Chem. Phys. Lett. 149, 463 (1988).
http://dx.doi.org/10.1016/0009-2614(88)80364-6
166.
166. L. M. Duan, A. Kuzmich, and H. J. Kimble, Phys. Rev. A 67, 032305 (2003).
http://dx.doi.org/10.1103/PhysRevA.67.032305
167.
167. H. G. Barros, A. Stute, T. E. Northup, C. Russo, P. O. Schmidt, and R. Blatt, New J. Phys. 11, 103004 (2009).
http://dx.doi.org/10.1088/1367-2630/11/10/103004
168.
168. D. Kielpinski, C. Monroe, and D. Wineland, Nature (London) 417, 709 (2002).
http://dx.doi.org/10.1038/nature00784
169.
169. M. Riebe, T. Monz, K. Kim, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, Nat. Phys. 4, 839 (2008).
http://dx.doi.org/10.1038/nphys1107
170.
170. J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D. Leibfried, and D. J. Wineland, Science 325, 1227 (2009).
http://dx.doi.org/10.1126/science.1177077
171.
171. S. Kitson, P. Jonsson, J. Rarity, and P. Tapster, Phys. Rev. A 58, 620 (1998).
http://dx.doi.org/10.1103/PhysRevA.58.620
172.
172. A. Kiraz, S. Falth, C. Becher, B. Gayra, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, Phys. Rev. B 65, 161303R (2002).
http://dx.doi.org/10.1103/PhysRevB.65.161303
173.
173. A. Kiraz, M. Ehrl, T. Hellerer, O. E. Mustecaplioglu, C. Brauchle, and A. Zumbusch, Phys. Rev. Lett. 94, 223602 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.223602
174.
174. L. Fleury, J. Segura, G. Zumofen, B. Hecht, and U. Wild, Phys. Rev. Lett. 84, 1148 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.1148
175.
175. A. J. Shields, M. P. O’Sullivan, I. Farrer, D. A. Ritchie, R. A. Hogg, M. L. Leadbeater, C. E. Norman, and M. Pepper, Appl. Phys. Lett. 76, 3673 (2000).
http://dx.doi.org/10.1063/1.126745
176.
176. P. Michler, A. Imamoglu, M. Mason, P. Carson, G. Strouse, and S. Buratto, Nature (London) 406, 968 (2000).
http://dx.doi.org/10.1038/35023100
177.
177. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 84, 2513 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2513
178.
178. E. Moreau, I. Robert, J. Gerard, I. Abram, L. Manin, and V. Thierry-Mieg, Appl. Phys. Lett. 79, 2865 (2001).
http://dx.doi.org/10.1063/1.1415346
179.
179. C. Santori, M. Pelton, G. Solomon, Y. Dale, and E. Yamamoto, Phys. Rev. Lett. 86, 1502 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.1502
180.
180. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. Solomon, J. Plant, and Y. Yamamoto, Phys. Rev. Lett. 89, 233602 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.233602
181.
181. C. Unitt, A. Bennett, P. Atkinson, K. Cooper, P. See, D. Gevaux, M. Ward, R. Stevenson, D. Ritchie, and A. Shields, J. Opt. B: Quantum Semiclassical Opt. 7, S129 (2005).
http://dx.doi.org/10.1088/1464-4266/7/7/001
182.
182. A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. Krenner, R. Meyer, G. Bohm, and J. Finley, Phys. Rev. B 71, 241304R (2005).
http://dx.doi.org/10.1103/PhysRevB.71.241304
183.
183. S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaitre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, Appl. Phys. Lett. 87, 163107 (2005).
http://dx.doi.org/10.1063/1.2103397
184.
184. D. Press, S. Goetzinger, S. Reitzenstein, C. Hofmann, A. Loeffler, M. Kamp, A. Forchel, and Y. Yamamoto, Phys. Rev. Lett. 98, 117402 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.117402
185.
185. M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, A. J. Bennett, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, Appl. Phys. Lett. 90, 063512 (2007).
http://dx.doi.org/10.1063/1.2472172
186.
186. D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, Appl. Phys. Lett. 63, 3203 (1993).
http://dx.doi.org/10.1063/1.110199
187.
187. C. M. Santori, Ph.D. dissertation, Stanford University, 2003.
188.
188. E. M. Purcell, Phys. Rev. 69, 681 (1946).
http://dx.doi.org/10.1103/PhysRev.69.37
189.
189. A. Muller, W. Fang, J. Lawall, and G. S. Solomon, Phys. Rev. Lett. 103, 217402 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.217402
190.
190. E. B. Flagg, A. Muller, S. V. Polyakov, A. Ling, A. Migdall, and G. S. Solomon, Phys. Rev. Lett. 104, 137401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.137401
191.
191. R. B. Patel, A. J. Bennett, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, Nature Photon. 4, 632 (2010).
http://dx.doi.org/10.1038/nphoton.2010.161
192.
192. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, Opt. Lett. 25, 1294 (2000).
http://dx.doi.org/10.1364/OL.25.001294
193.
193. S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, New J. Phys. 13, 035024 (2011).
http://dx.doi.org/10.1088/1367-2630/13/3/035024
194.
194. P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C.L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, J. Wrachtrup, Phys. Rev. Lett. 97, 083002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.083002
195.
195. P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, Appl. Phys. Lett. 95, 191115 (2009).
http://dx.doi.org/10.1063/1.3262948
196.
196. C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Philips, A. S. Zibrov, and M. D. Lukin, Science 301, 196 (2003).
http://dx.doi.org/10.1126/science.1085946
197.
197. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, Nature (London) 423, 731 (2003).
http://dx.doi.org/10.1038/nature01714
198.
198. R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A.B. Kennedy, and A. Kuzmich, Nat. Phys. 5, 100 (2009).
http://dx.doi.org/10.1038/nphys1152
199.
199. B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.-S. Yuan, S. Chen, and J.-W. Pan, Nat. Phys. 5, 95 (2009).
http://dx.doi.org/10.1038/nphys1153
200.
200. E. S. Fry, Phys. Rev. A 8, 1219 (1973).
http://dx.doi.org/10.1103/PhysRevA.8.1219
201.
201. W. Louisell, A. Siegman, and A. Yariv, Phys. Rev. 124, 1646 (1961).
http://dx.doi.org/10.1103/PhysRev.124.1646
202.
202. B. Y. Zeldovich and D. N. Klyshko, JETP Lett. 9, 40 (1969) [http://www.jetpletters.ac.ru/ps/1639/article_25275.pdf].
203.
203. D. Burnham and D. Weinberg, Phys. Rev. Lett. 25, 84 (1970).
http://dx.doi.org/10.1103/PhysRevLett.25.84
204.
204. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995).
205.
205. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, San Diego, 2003).
206.
206. J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, Opt. Express 17, 6727 (2009).
http://dx.doi.org/10.1364/OE.17.006727
207.
207. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
http://dx.doi.org/10.1103/PhysRev.127.1918
208.
208. A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1413
209.
209. C. K. Law, I. A. Walmsley, and J. H. Eberly, Phys. Rev. Lett. 84, 5304 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.5304
210.
210. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, Phys. Rev. A 64, 063815 (2001).
http://dx.doi.org/10.1103/PhysRevA.64.063815
211.
211. P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, New J. Phys. 10, 093011 (2008).
http://dx.doi.org/10.1088/1367-2630/10/9/093011
212.
212. S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. de Micheli, D. B. Ostrowski, and N. Gisin, Electron. Lett. 37, 26 (2001).
http://dx.doi.org/10.1049/el:20010009
213.
213. S. Tanzilli, W. Tittel, H. de Riedmatten, H. Zbinden, P. Baldi, M. de Micheli, D. B. Ostrowski, and N. Gisin, Eur. Phys. J. D 18, 155 (2002).
http://dx.doi.org/10.1007/s10053-002-8817-0
214.
214. E. J. Mason, M. A. Albota, F. Konig, and F. N.C. Wong, Opt. Lett. 27, 2115 (2002).
http://dx.doi.org/10.1364/OL.27.002115
215.
215. O. Alibart, D. B. Ostrowski, P. Baldi, and S. Tanzilli, Opt. Lett. 30, 1539 (2005).
http://dx.doi.org/10.1364/OL.30.001539
216.
216. Y.-P. Huang, J. B. Altepeter, and P. Kumar, Phys. Rev. A 82, 043826 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.043826
217.
217. M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, Opt. Express 15, 7479 (2007).
http://dx.doi.org/10.1364/OE.15.007479
218.
218. T. Zhong, F. N. Wong, T. D. Roberts, and P. Battle, Opt. Express 17, 12019 (2009).
http://dx.doi.org/10.1364/OE.17.012019
219.
219. Z. H. Levine, J. Fan, J. Chen, A. Ling, and A. Migdall, Opt. Express 18, 3708 (2010).
http://dx.doi.org/10.1364/OE.18.003708
220.
220. J. E. Sharping, M. Fiorentino, and P. Kumar, Opt. Lett. 26, 367 (2001).
http://dx.doi.org/10.1364/OL.26.000367
221.
221. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photonics Technol. Lett. 14, 983 (2002).
http://dx.doi.org/10.1109/LPT.2002.1012406
222.
222. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.053601
223.
223. J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. Russell, Opt. Express 13, 534 (2005).
http://dx.doi.org/10.1364/OPEX.13.000534
224.
224. J. Fan, A. Dogariu, and L. J. Wang, Opt. Lett. 30, 1530 (2005).
http://dx.doi.org/10.1364/OL.30.001530
225.
225. J. Fan, A. Migdall, and L. J. Wang, Opt. Lett. 30, 3368 (2005).
http://dx.doi.org/10.1364/OL.30.003368
226.
226. J. Fan and A. Migdall, Opt. Lett. 31, 2771 (2006).
http://dx.doi.org/10.1364/OL.31.002771
227.
227. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
http://dx.doi.org/10.1109/JSTQE.2004.841479
228.
228. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, Opt. Express 14, 12388 (2006).
http://dx.doi.org/10.1364/OE.14.012388
229.
229. K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-i. Itabashi, Opt. Express 16, 20368 (2008).
http://dx.doi.org/10.1364/OE.16.020368
230.
230. H. Takesue and K. Inoue, Opt. Express 13, 7832 (2005).
http://dx.doi.org/10.1364/OPEX.13.007832
231.
231. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, Opt. Lett. 31, 1905 (2006).
http://dx.doi.org/10.1364/OL.31.001905
232.
232. O. Kuzucu and F. N.C. Wong, Phys. Rev. A 77, 032314 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.032314
233.
233. A. L. Migdall, D. Branning, and S. Castelletto, Phys. Rev. A 66, 053805 (2002).
http://dx.doi.org/10.1103/PhysRevA.66.053805
234.
234. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, Phys. Rev. A 68, 043814 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.043814
235.
235. E. Jeffrey, N. A. Peters, and P. G. Kwiat, New J. Phys. 6, 100 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/100
236.
236. J. H. Shapiro and F. Wong, Opt. Lett. 32, 2698 (2007).
http://dx.doi.org/10.1364/OL.32.002698
237.
237. T. Pittman, B. Jacobs, and J. Franson, Phys. Rev. A 66, 042303 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.137901
238.
238. T. Pittman and J. Franson, Phys. Rev. A 66, 062302 (2002).
http://dx.doi.org/10.1103/PhysRevA.66.062302
239.
239. P. M. Leung and T. C. Ralph, Phys. Rev. A 74, 022311 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.022311
240.
240. K. T. McCusker, N. A. Peters, A. P. VanDevender, and P. G. Kwiat, “A Deterministic Single-Photon Source,” in Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JTuA117.
241.
241. A. I. Lvovsky, B. C. Sanders, and W. Tittel, Nature Photon. 3, 706 (2009).
http://dx.doi.org/10.1038/nphoton.2009.231
242.
242. O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, Phys. Rev. Lett. 102, 123603 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.123603
243.
243. T. B. Pittman and J. D. Franson, Phys. Rev. A 74, 041801R (2006).
http://dx.doi.org/10.1103/PhysRevA.74.041801
244.
244. I. Afek, O. Ambar, and Y. Silberberg, Science 328, 879 (2010).
http://dx.doi.org/10.1126/science.1188172
245.
245. H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley VCH, Berlin, 2004), Chap. 7.
246.
246. S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, J. Mod. Opt. 51, 1267 (2004).
http://dx.doi.org/10.1080/09500340408235272
247.
247. A. Lacaita, F. Zappa, S. Cova, and P. Lovati, Appl. Opt. 35, 2986 (1996).
http://dx.doi.org/10.1364/AO.35.002986
248.
248. G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zginden, J. Mod. Opt. 51, 1381 (2004).
http://dx.doi.org/10.1080/09500340410001677094
249.
249. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, Appl. Phys. Lett. 91, 041114 (2007).
http://dx.doi.org/10.1063/1.2760135
250.
250. A. Lacaita, P. A. Francese, F. Zappa, and S. Cova, Appl. Opt. 33, 6902 (1994).
http://dx.doi.org/10.1364/AO.33.006902
251.
251. D. M. Taylor, J. C. Jackson, A. P. Morrison, A. Mathewson, and J. G. Rarity, J. Mod. Opt. 51, 1323 (2004).
http://dx.doi.org/10.1080/09500340408235275
252.
252. S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, Nature (London) 403, 405 (2000).
http://dx.doi.org/10.1038/35000166
253.
253. K. M. Rosfjord, J. K.W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol'tsman, and K. K. Berggren, Opt. Express 14, 527 (2006).
http://dx.doi.org/10.1364/OPEX.14.000527
254.
254. M. A. Albota and F. N.C. Wong, Opt. Lett. 29, 1449 (2004).
http://dx.doi.org/10.1364/OL.29.001449
255.
255. H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer, and Y. Yamamoto, Opt. Express 14, 13067 (2006).
http://dx.doi.org/10.1364/OE.14.013067
256.
256. R. Thew, S. Tanzilli, L. Krainer, S. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, New J. Phys. 8, 32 (2006).
http://dx.doi.org/10.1088/1367-2630/8/3/032
257.
257. D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, Phys. Rev. A 71, 061803R (2005).
http://dx.doi.org/10.1103/PhysRevA.71.061803
258.
258. A. Peacock, P. Verhoeve, N. Rando, A. van Dordrecht, B. G. Taylor, C. Erd, M. A.C. Perryman, R. Venn, J. Howlett, D. J. Goldie, J. Lumley, and M. Wallis, Nature (London) 381, 135 (1996).
http://dx.doi.org/10.1038/381135a0
259.
259. A. Peacock, P. Verhoeve, N. Rando, A. van Dordrecht, B. G. Taylor, C. Erd, M. A.C. Perryman, R. Venn, J. Howlett, D. J. Goldie, J. Lumley, and M. Wallis, J. Appl. Phys. 81, 7641 (1997).
http://dx.doi.org/10.1063/1.365342
260.
260. P. Verhoeve, N. Nando, A. Peacock, A. van Dordrecht, A. Poelaert, D. Goldie, and R. Venn, J. Appl. Phys. 83, 6118 (1998).
http://dx.doi.org/10.1063/1.367481
261.
261. S. Friedrich, J. Low Temp. Phys. 151, 277 (2008).
http://dx.doi.org/10.1007/s10909-007-9697-y
262.
262. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol'tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, Nature Photon. 2, 302 (2008).
http://dx.doi.org/10.1038/nphoton.2008.51
263.
263. M. Fujiwara and M. Sasaki, Appl. Opt. 46, 3069 (2007).
http://dx.doi.org/10.1364/AO.46.003069
264.
264. E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 9, 1502 (2003).
http://dx.doi.org/10.1109/JSTQE.2003.820917
265.
265. E. J. Gansen, M. A. Rowe, M. B. Greene, D. Rosenberg, T. E. Harvey, M. Y. Su, R. H. Hadfield, S. W. Nam, and R. P. Mirin, Nature Photon. 1, 585 (2007).
http://dx.doi.org/10.1038/nphoton.2007.173
266.
266. D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, J. Mod. Opt. 51, 1499 (2004).
http://dx.doi.org/10.1080/09500340408235288
267.
267. B. E. Kardynal, Z. L. Yuan, and A. J. Shields, Nature Photon. 2, 425 (2008).
http://dx.doi.org/10.1038/nphoton.2008.101
268.
268. A. Gulian, K. Wood, D. van Vechten, and G. Fritz, J. Mod. Opt. 15, 1467 (2004).
http://dx.doi.org/10.1080/09500340408235286
269.
269. D. James and P. Kwiat, Phys. Rev. Lett. 89, 183601 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.183601
270.
270. W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, Phys. Rev. A 71, 033819 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.033819
271.
271. See http://jp.hamamatsu.com/resources/products/etd/pdf/m-h7422e.pdf (2010) for an example of a visible PMT commercially packaged as a photon-counting module including voltage bias electronics and thermoelectric cooling.
272.
272. Certain commercial equipment, instruments or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment are necessarily the best available for the purpose.
273.
273. See http://jp.hamamatsu.com/resources/products/etd/pdf/NIR-PMT_APPLI_TPMO1040E02.pdf (2010) for an example of a near IR PMT commercially packaged as a photon-counting module including voltage bias electronics and thermoelectric cooling.
274.
274. See http://excelitas.com/ProductPages/Single_Photon_Counting_Modules_SPCM.aspx (2011) for an example of a visible thick junction SPAD commercially packaged as a photon-counting module including voltage bias electronics and thermoelectric cooling.
275.
275. See http://www.microphotondevices.com/media/pdf/PDM_v3_6.pdf (2011) for an example of a visible thin-junction SPAD commercially packaged as a photon-counting module including voltage bias electronics and thermoelectric cooling.
276.
276. O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, Appl. Rev. Lett. 97, 031102 (2010).
http://dx.doi.org/10.1063/1.3464556
277.
277. M. Akiba, K. Tsujino, and M. Sasaki, Opt. Lett. 35, 2621 (2010).
http://dx.doi.org/10.1364/OL.35.002621
278.
278. M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Unlu, J. Mod. Opt. 56, 309 (2009).
http://dx.doi.org/10.1080/09500340802272332
279.
279. D. A. Kalashnikov, S. H. Tan, M. V. Chekhova, and L. A. Krivitsky, Opt. Express 19, 9352 (2011).
http://dx.doi.org/10.1364/OE.19.009352
280.
280. See http://jp.hamamatsu.com/resources/products/ssd/pdf/s10362-11_series_kapd1022e05.pdf (2009) for an example of a commercial visible multipixel SPAD.
281.
281. R. A. LaRue, G. A. Davis, D. Pudvay, K. A. Costello, and V. W. Aebi, IEEE Elect. Dev. Lett. 20, 126 (1999).
http://dx.doi.org/10.1109/55.748909
282.
282. N. Bertone, R. Biasi, and B. Dion, Proc. SPIE 5726, 153 (2005).
http://dx.doi.org/10.1117/12.605906)
283.
283. M. Micuda, O. Haderka, and M. Jezek, Phys. Rev. A 78, 025804 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.025804
284.
284. L. A. Jiang, E. A. Dauler, and J. T. Chang, Phys. Rev. A 75, 062325 (2007).
http://dx.doi.org/10.1103/PhysRevA.75.062325
285.
285. G. Brida, I. P. Degiovanni, F. Piacentini, V. Schettini, S. V. Polyakov, and A. Migdall, Rev. Sci. Instrum. 80, 116103 (2009).
http://dx.doi.org/10.1063/1.3247907
286.
286. C. Gobby, Z. L. Yuan, and A. J. Shields, Appl. Phys. Lett. 84, 3762 (2004).
http://dx.doi.org/10.1063/1.1738173
287.
287. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, Opt. Express 16, 18790 (2008).
http://dx.doi.org/10.1364/OE.16.018790
288.
288. A. Yoshizawa, R. Kaji, and H. Tsuchida, Appl. Phys. Lett. 84, 3606 (2004).
http://dx.doi.org/10.1063/1.1738176
289.
289. X. Jiang, M. A. Itzler, B. Nyman, and K. Slomkowski, Proc. SPIE 7320, 732011 (2009).
http://dx.doi.org/10.1117/12.818681
291.
291. K. Zhao, A. Zhang, Y. hwa Lo, and W. Farr, Appl. Phys. Lett. 91, 081107 (2007).
http://dx.doi.org/10.1063/1.2772231
292.
292. H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, New J. Phys. 7, 232 (2005).
http://dx.doi.org/10.1088/1367-2630/7/1/232
293.
293. A. P. Van Devender and P. G. Kwiat, J. Opt. Soc. Am. B 24, 295 (2007).
http://dx.doi.org/10.1364/JOSAB.24.000295
294.
294. H. Xu, L. Ma, A. Mink, B. Hershman, and X. Tang, Opt. Express 15, 7247 (2007).
http://dx.doi.org/10.1364/OE.15.007247
295.
295. S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, Appl. Phys. Lett. 74, 1063 (1999).
http://dx.doi.org/10.1063/1.123482
296.
296. B. Baek, K. McKay, M. Stevens, J. K.H. Hogue, and S. W. Nam, IEEE J. Quantum Electron. 46, 991 (2010).
http://dx.doi.org/10.1109/JQE.2010.2042141
297.
297. P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Petroff, Appl. Opt. 33, 1844 (1994).
http://dx.doi.org/10.1364/AO.33.001844
298.
298. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, Phys. Rev. Lett. 98, 010503 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.010503
299.
299. A. E. Lita, A. J. Miller, and S. W. Nam, Opt. Express 16, 3032 (2008).
http://dx.doi.org/10.1364/OE.16.003032
300.
300. A. E. Lita, B. Calkins, L. A. Pellochoud, A. J. Miller, and S. Nam, AIP Conf. Proc. 1185, 351 (2009).
http://dx.doi.org/10.1063/1.3292350
301.
301. D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, Metrologia 46, S288 (2009).
http://dx.doi.org/10.1088/0026-1394/46/4/S29
302.
302. D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, Tenth International Conference on Quantum Communication, Measurement and Computation (QCMC), Brisbane, Queensland, Australia, 2010.
303.
303. D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, Opt. Express 19, 870 (2011).
http://dx.doi.org/10.1364/OE.19.000870
304.
304. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, Nature Photon. 1, 343 (2007).
http://dx.doi.org/10.1038/nphoton.2007.75
305.
305. T. Peacock, P. Verhoeve, N. Rando, C. Erd, M. Bavdaz, B. Taylor, and D. Perez, Astron. Astrophys., Suppl. Ser. 127, 497 (1998).
http://dx.doi.org/10.1051/aas:1998116
306.
306. J. C. Blakesley, P. See, A. J. Shields, B. E. Kardyna, P. Atkinson, I. Farrer, and D. A. Ritchie, Phys. Rev. Lett. 94, 067401 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.067401
307.
307. M. A. Rowe, E. J. Gansen, M. Greene, R. H. Hadfield, T. E. Harvey, M. Y. Su, S. W. Nam, R. P. Mirin, and D. Rosenberg, Appl. Phys. Lett. 89, 253505 (2006).
http://dx.doi.org/10.1063/1.2403907
308.
308. M. A. Rowe, G. M. Salley, E. J. Gansen, S. M. Etzel, S. W. Nam, and R. P. Mirin, J. Appl. Phys. 107, 063110 (2010).
http://dx.doi.org/10.1063/1.3359684
309.
309. R. Hadfield, Nature Photon. 3, 696 (2009).
http://dx.doi.org/10.1038/nphoton.2009.230
310.
310. R. E. Simon, A. H. Sommer, J. A. Tietjen, and B. F. Williams, Appl. Phys. Lett. 13, 355 (1968).
http://dx.doi.org/10.1063/1.1652468
311.
311. G. A. Morton, H. M. Smith, and H. R. Krall, Appl. Phys. Lett. 13, 356 (1968).
http://dx.doi.org/10.1063/1.1652469
312.
312. A. Nevet, A. Hayat, and M. Orenstein, Opt. Lett. 36, 725 (2011).
http://dx.doi.org/10.1364/OL.36.000725
313.
313. M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, J. Mod. Opt. 54, 283 (2007).
http://dx.doi.org/10.1080/09500340600792291
314.
314. H. Kosaka, D. S. Rao, H. D. Robinson, P. Bandaru, T. Sakamoto, and E. Yablonovitch, Phys. Rev. B 65, 201307 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.201307
315.
315. G. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewski, IEEE Trans. Appl. Supercond. 11, 574 (2001).
http://dx.doi.org/10.1109/77.919410
316.
316. G. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, Appl. Phys. Lett. 79, 705 (2001).
http://dx.doi.org/10.1063/1.1388868
317.
317. S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, Appl. Phys. Lett. 92, 061116 (2008).
http://dx.doi.org/10.1063/1.2870099
318.
318. V. Anant, A. J. Kerman, E. A. Dauler, J. K. Yang, K. M. Rosfjord, and K. K. Berggren, Opt. Express 16, 10750 (2008).
http://dx.doi.org/10.1364/OE.16.010750
319.
319. E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K.W. Yang, G. G. B. Voronovc, S. A. Hamilton, and K. K. Berggren, J. Mod. Opt. 56, 364 (2009).
http://dx.doi.org/10.1080/09500340802411989
320.
320. J. K.W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, IEEE Trans. Appl. Supercond. 17, 581 (2007).
http://dx.doi.org/10.1109/TASC.2007.898660
321.
321. A. P. VanDevender and P. G. Kwiat, J. Mod. Opt. 51, 1433 (2004).
322.
322. D. Herr, see http://lepton-tech.com/pdf/counterdatasheet12-10-08.pdf (2008) for an example of a commercial IR up-conversion photon-counting module using a PMT to detect the up-converted photon.
323.
323. H. Xu, L. Ma, A. Mink, B. Hershman, and X. Tang, Phys. Rev. A 72, 052311 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.043604
324.
324. E. Knill, R. Laflamme, and G. J. Milburn, Nature (London) 409, 46 (2001).
http://dx.doi.org/10.1038/35051009
325.
325. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K.W. Yang, K. K. Berggren, G. Goltsman, and B. Voronov, Appl. Phys. Lett. 88, 111116 (2006).
http://dx.doi.org/10.1063/1.2183810
326.
326. B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, Appl. Phys. Lett. 73, 735 (1998).
http://dx.doi.org/10.1063/1.121984
327.
327. D. Fukuda, G. Fujii, A. Yoshizawa, H. Tsuchida, R. M.T. Damayanthi, H. Takahashi, S. Inoue, and M. Ohkubo, J. Low Temp. Phys. 151, 100 (2008).
http://dx.doi.org/10.1007/s10909-007-9634-0
328.
328. A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, Opt. Express 19, 9102 (2011).
http://dx.doi.org/10.1364/OE.19.009102
329.
329. K. Banaszek and I. A. Walmsley, Opt. Lett. 28, 52 (2003).
http://dx.doi.org/10.1364/OL.28.000052
330.
330. A. Imamoglu, Phys. Rev. Lett. 89, 163602 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.163602
331.
331. N. Imoto, H. A. Haus, and Y. Yamamoto, Phys. Rev. A 32, 2287 (1985).
http://dx.doi.org/10.1103/PhysRevA.32.2287
332.
332. P. Kok, H. Lee, and J. P. Dowling, Phys. Rev. A 66, 063814 (2002).
http://dx.doi.org/10.1103/PhysRevA.66.063814
333.
333. A. D. Greentree, R. G. Beausoleil, L. C.L. Hollenberg, W. J. Munro, K. Nemoto, S. Prawer, and T. P. Spiller, New J. Phys. 11, 093005 (2009).
http://dx.doi.org/10.1088/1367-2630/11/9/093005
334.
334. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, Phys. Rev. Lett. 75, 4710 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.4710
335.
335. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Phys. Rev. Lett. 93, 083904 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.083904
336.
336. G. J. Pryde, J. L. O’Brien, A. G. White, S. D. Bartlett, and T. C. Ralph, Phys. Rev. Lett. 92, 190402 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.190402
337.
337. P. Kok and W. J. Munro, Phys. Rev. Lett. 95, 048901 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.048901
338.
338. G. J. Pryde, J. L. O’Brien, A. G. White, S. D. Bartlett, and T. C. Ralph, Phys. Rev. Lett. 95, 048902 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.048902
339.
339. R. H. Haitz, J. Appl. Phys. 35, 1370 (1964).
http://dx.doi.org/10.1063/1.1713636
340.
340. R. H. Haitz, J. Appl. Phys. 36, 3123 (1965).
http://dx.doi.org/10.1063/1.1702936
341.
341. A. Lacaita, S. Longhi, and A. Spinelli, in Proceedings of the International Conference on Applications of Photonic Technology, edited by G. A. Lampropulos, J. Chrostowski, and R. M. Measures (Plenum, London, 1994).
342.
342. A. Lacaita, A. Spinelli, and S. Longhi, Appl. Phys. Lett. 67, 2627 (1995).
http://dx.doi.org/10.1063/1.114317
343.
343. W. Nicholson, Nuclear Electronics (Wiley, New York, 1974).
344.
344. M. A. Itzler, X. Jiang, B. Nyman, and K. Slomkowski, Proc. SPIE 7222, 72221K (2000).
http://dx.doi.org/10.1117/12.814669
345.
345. P. Antognetti, S. Cova, and A. Longoni, in Proceedings of the Second Ispra Nuclear Electronics Symposium (Office for Official Publications of the European Communities, Luxembourg, Belgium, 1975), EURATOM Publ. EUR 537e.
346.
346. S. Cova, A. Longoni, and A. Andreoni, Rev. Sci. Instrum. 52, 408 (1981).
http://dx.doi.org/10.1063/1.1136594
347.
347. S. Cova, A. Longoni, and G. Ripamonti, IEEE Trans. Nucl. Sci. 29, 599 (1982).
http://dx.doi.org/10.1109/TNS.1982.4335917
348.
348. M. Ware, A. Migdall, J. C. Bienfang, and S. V. Polyakov, J. Mod. Opt. 54, 361 (2007).
http://dx.doi.org/10.1080/09500340600759597
349.
349. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, Appl. Opt. 35, 1956 (1996).
http://dx.doi.org/10.1364/AO.35.001956
350.
350. A. Tosi, A. Gallivanoni, F. Zappa, and S. Cova, Proc. SPIE 6372, 63720Q (2006).
http://dx.doi.org/10.1117/12.685808
351.
351. F. Zappa, A. Giudice, M. Ghioni, and S. Cova, in Proc. of the 28th European Solid-State Circuits Conference, ESSCIRC (2002), Florence, Italy, p. 355, see http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1471538.
352.
352. D. S. Bethune and W. P. Risk, IEEE J. Quantum Electron. 36, 340 (2000).
http://dx.doi.org/10.1109/3.825881
353.
353. A. Tomita and K. Nakamura, Opt. Lett. 27, 1827 (2002).
http://dx.doi.org/10.1364/OL.27.001827
354.
354. Z. J. Wei, P. Zhou, and J. D. Wang, J. Phys. D: Appl. Phys. 40, 6922 (2007).
http://dx.doi.org/10.1088/0022-3727/40/22/011
355.
355. A. Yoshizawa, R. Kaji, and H. Tsuchida, Jpn. J. Appl. Phys. 43, L735 (2004).
http://dx.doi.org/10.1143/JJAP.43.L735
356.
356. H. Finkelstein, M. Gross, Y.-H. Lo, and S. Esener, IEEE J. Sel. Top. Quantum Electron. 13, 959 (2007).
http://dx.doi.org/10.1109/JSTQE.2007.901884
357.
357. M. Ghioni, S. Cova, F. Zappa, and C. Samori, Rev. Sci. Instrum. 67, 3440 (1996).
http://dx.doi.org/10.1063/1.1147156
358.
358. H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.230504
359.
359. T. Schmitt-Manderbach, H. Weier, M. Furst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, Phys. Rev. Lett. 98, 010504 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.010504
360.
360. V. Makarov, A. Anisimov, and J. Skaar, Phys. Rev. A 74, 022313 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.022313
361.
361. A. Lamas-Linares and C. Kurtsiefer, Opt. Express 15, 9388 (2007).
http://dx.doi.org/10.1364/OE.15.009388
362.
362. V. Makarov, New J. Phys. 11, 065003 (2009).
http://dx.doi.org/10.1088/1367-2630/11/6/065003
363.
363. V. Burenkov, B. Qi, B. Fortescue, and H.-K. Lo (2010), see http://arxiv.org/abs/1005.0272.
364.
364. N. Sangouard, C. Simon, J. Min, H. Zbinden, H. de Riedmatten, and N. Gisin, Phys. Rev. A 76, 050301R (2007).
http://dx.doi.org/10.1103/PhysRevA.76.050301
365.
365. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, Phys. Rev. Lett. 93, 180502 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.180502
366.
366. E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, Nature (London) 420, 762 (2002).
http://dx.doi.org/10.1038/420762a
367.
367. A. R. Beaumont, J. Y. Cheung, C. J. Chunnilall, J. Ireland, and M. G. White, Nucl. Instrum. Methods Phys. Res. A 610, 183 (2009).
http://dx.doi.org/10.1016/j.nima.2009.05.177
368.
368. J. G. Rarity, P. R. Tapster, and E. Jakeman, Opt. Commun. 62, 201 (1987).
http://dx.doi.org/10.1016/0030-4018(87)90028-9
http://aip.metastore.ingenta.com/content/aip/journal/rsi/82/7/10.1063/1.3610677
Loading
/content/aip/journal/rsi/82/7/10.1063/1.3610677
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/82/7/10.1063/1.3610677
2011-07-27
2014-09-21

Abstract

We review the current status of single-photon-source and single-photon-detector technologies operating at wavelengths from the ultraviolet to the infrared. We discuss applications of these technologies to quantum communication, a field currently driving much of the development of single-photon sources and detectors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/82/7/1.3610677.html;jsessionid=2la8kw7a9xip2.x-aip-live-02?itemId=/content/aip/journal/rsi/82/7/10.1063/1.3610677&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Invited Review Article: Single-photon sources and detectors
http://aip.metastore.ingenta.com/content/aip/journal/rsi/82/7/10.1063/1.3610677
10.1063/1.3610677
SEARCH_EXPAND_ITEM