1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Invited Article: Attosecond photonics: Synthesis and control of light transients
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/83/11/10.1063/1.4758310
1.
1. H. Abraham and T. Lemoine, Compt. Rend. 129, 206 (1899).
2.
2. T. H. Maiman, Nature (London) 187, 493 (1960).
http://dx.doi.org/10.1038/187493a0
3.
3. M. Dantus, R. M. Bowman, and A. H. Zewail, Nature (London) 343, 737 (1990).
http://dx.doi.org/10.1038/343737a0
4.
4. Ahmed H. Zewail, J. Phys. Chem. A 104, 5660 (2000).
http://dx.doi.org/10.1021/jp001460h
5.
5. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, Nature (London) 414, 509 (2001).
http://dx.doi.org/10.1038/35107000
6.
6. Y. Mairesse, A. de Bohan, L. J. Frasinski, H. Merdji, L. C. Dinu, P. Monchicourt, P. Breger, M. Kovačev, R. Taïeb, B. Carré, H. G. Muller, P. Agostini, and P. Salières, Science 302, 1540 (2003).
http://dx.doi.org/10.1126/science.1090277
7.
7. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, Nature (London) 419, 803 (2002).
http://dx.doi.org/10.1038/nature01143
8.
8. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Nature (London) 427, 817 (2004).
http://dx.doi.org/10.1038/nature02277
9.
9. E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, Nature (London) 466, 739 (2010).
http://dx.doi.org/10.1038/nature09212
10.
10. C. Froehly, B. Colombeau, and M. Vampouille, in Progress in Optics, edited by E. Wolf (Elsevier, 1983), Vol. 20, p. 63.
11.
11. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
http://dx.doi.org/10.1063/1.1150614
12.
12. O. E. Martinez, J. P. Gordon, and R. L. Fork, J. Opt. Soc. Am. A 1, 1003 (1984).
http://dx.doi.org/10.1364/JOSAA.1.001003
13.
13. E. Treacy, IEEE J. Quantum Electron. 5, 454 (1969).
http://dx.doi.org/10.1109/JQE.1969.1076303
14.
14. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert II, IEEE J. Quantum Electron. 28, 908 (1992).
http://dx.doi.org/10.1109/3.135209
15.
15. A. Weiner, Ultrafast Optics (Wiley, New Jersey, 2009).
16.
16. S. T. Cundiff and A. M. Weiner, Nat. Photon. 4, 760 (2010).
http://dx.doi.org/10.1038/nphoton.2010.196
17.
17. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, Opt. Lett. 25, 575 (2000).
http://dx.doi.org/10.1364/OL.25.000575
18.
18. T. Brixner and G. Gerber, Opt. Lett. 26, 557 (2001).
http://dx.doi.org/10.1364/OL.26.000557
19.
19. W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
http://dx.doi.org/10.1126/science.259.5101.1581
20.
20. P. W. Brumer and M. Shapiro, Principles of the Quantum Control of Molecular Processes (Wiley-Interscience, New Jersey, 2003).
21.
21. T. Brixner, N. H. Damrauer, and G. Gerber, in Advances in Atomic, Molecular, and Optical Physics, edited by B. Benjamin and W. Herbert (Academic, 2001), Vol. 46, pp. 1.
22.
22. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
http://dx.doi.org/10.1126/science.282.5390.919
23.
23. M. Wollenhaupt, V. Engel, and T. Baumert, Ann. Rev. Phys. Chem. 56, 25 (2005).
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141315
24.
24. S. T. Cundiff, J. Phys. D: Appl. Phys. 35, R43 (2002).
http://dx.doi.org/10.1088/0022-3727/35/8/201
25.
25. L. Xu, Ch. Spielmann, F. Krausz, and R. Szipöcs, Opt. Lett. 21, 1259 (1996).
http://dx.doi.org/10.1364/OL.21.001259
26.
26. J. Reichert, R. Holzwarth, Th. Udem, and T. W. Hänsch, Opt. Commun. 172, 59 (1999).
http://dx.doi.org/10.1016/S0030-4018(99)00491-5
27.
27. A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.740
28.
28. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
http://dx.doi.org/10.1126/science.288.5466.635
29.
29. Th. Udem, R. Holzwarth, and T. W. Hansch, Nature (London) 416, 233 (2002).
http://dx.doi.org/10.1038/416233a
30.
30. S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, Nat. Photon. 4, 462 (2010).
http://dx.doi.org/10.1038/nphoton.2010.91
31.
31. T. W. Hänsch, Rev. Mod. Phys. 78, 1297 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.1297
32.
32. A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, Nature (London) 421, 611 (2003).
http://dx.doi.org/10.1038/nature01414
33.
33. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.163
34.
34. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, Science 320, 1614 (2008).
http://dx.doi.org/10.1126/science.1157846
35.
35. E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Science 305, 1267 (2004).
http://dx.doi.org/10.1126/science.1100866
36.
36. J. Mauritsson, T. Remetter, M. Swoboda, K. Klünder, A. L’Huillier, K. J. Schafer, O. Ghafur, F. Kelkensberg, W. Siu, P. Johnsson, M. J. J. Vrakking, I. Znakovskaya, T. Uphues, S. Zherebtsov, M. F. Kling, F. Lépine, E. Benedetti, F. Ferrari, G. Sansone, and M. Nisoli, Phys. Rev. Lett. 105, 053001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.053001
37.
37. M. F. Kling, Ch. Siedschlag, A. J. Verhoef, J. I. Khan, M. Schultze, Th. Uphues, Y. Ni, M. Uiberacker, M. Drescher, F. Krausz, and M. J. J. Vrakking, Science 312, 246 (2006).
http://dx.doi.org/10.1126/science.1126259
38.
38. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, Science 314, 443 (2006).
http://dx.doi.org/10.1126/science.1132838
39.
39. A. L. Cavalieri, N. Muller, Th Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blumel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, Nature (London) 449, 1029 (2007).
http://dx.doi.org/10.1038/nature06229
40.
40. A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, Science 334, 195 (2011).
http://dx.doi.org/10.1126/science.1210268
41.
41. S. E. Harris and A. V. Sokolov, Phys. Rev. Lett. 81, 2894 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.2894
42.
42. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 85, 562 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.562
43.
43. T. Suzuki, M. Hirai, and M. Katsuragawa, Phys. Rev. Lett. 101, 243602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.243602
44.
44. J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta, Phys. Rev. Lett. 85, 2474 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.2474
45.
45. Z.-M. Hsieh, C.-J. Lai, H.-S. Chan, S.-Y. Wu, C.-K. Lee, W.-J. Chen, C.-L. Pan, F.-G. Yee, and A. H. Kung, Phys. Rev. Lett. 102, 213902 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.213902
46.
46. S. Baker, I. A. Walmsley, J. W. G. Tisch, and J. P. Marangos, Nat. Photon. 5, 664 (2011).
http://dx.doi.org/10.1038/nphoton.2011.256
47.
47. H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
http://dx.doi.org/10.1126/science.1198397
48.
48. R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
http://dx.doi.org/10.1126/science.1061754
49.
49. M. Yamashita, K. Yamane, and R. Morita, IEEE J. Sel. Top Quantum Electron. 12, 213 (2006).
http://dx.doi.org/10.1109/JSTQE.2006.871961
50.
50. S. Rausch, T. Binhammer, A. Harth, F. X. Krtner, and U. Morgner, Opt. Express 16, 17410 (2008).
http://dx.doi.org/10.1364/OE.16.017410
51.
51. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, Nat. Photon. 4, 33 (2010).
http://dx.doi.org/10.1038/nphoton.2009.258
52.
52. S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kartner, Nat. Photon. 5, 475 (2011).
http://dx.doi.org/10.1038/nphoton.2011.140
53.
53. E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, Science 317, 769 (2007).
http://dx.doi.org/10.1126/science.1142855
54.
54. M. Maier, W. Kaiser, and J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966).
http://dx.doi.org/10.1103/PhysRevLett.17.1275
55.
55. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
http://dx.doi.org/10.1364/OL.23.000792
56.
56. C. Yan and J.-C. Diels, J. Opt. Soc. Am. B 8, 1259 (1991).
http://dx.doi.org/10.1364/JOSAB.8.001259
57.
57. I. A. Walmsley and V. Wong, J. Opt. Soc. Am. B 13, 2453 (1996).
http://dx.doi.org/10.1364/JOSAB.13.002453
58.
58. R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
http://dx.doi.org/10.1364/JOSAA.10.001101
59.
59. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, Opt. Lett. 22, 522 (1997).
http://dx.doi.org/10.1364/OL.22.000522
60.
60. A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, New. J. Phys. 9, 242 (2007).
http://dx.doi.org/10.1088/1367-2630/9/7/242
61.
61. U. Graf, M. Fieß, M. Schultze, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Express 16, 18956 (2008).
http://dx.doi.org/10.1364/OE.16.018956
62.
62. R. Szipöcs, K. Ferencz, Ch. Spielmann, and F. Krausz, Opt. Lett. 19, 201 (1994).
http://dx.doi.org/10.1364/OL.19.000201
63.
63. V. Pervak, Appl. Opt. 50, C55 (2011).
http://dx.doi.org/10.1364/AO.50.000C55
64.
64. M. Z. Aleksei, Phys.-Usp. 49, 605 (2006).
http://dx.doi.org/10.1070/PU2006v049n06ABEH005975
65.
65. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Baltimore, MD, 2006).
66.
66. E. E. Serebryannikov et al., New. J. Phys. 10, 093001 (2008).
http://dx.doi.org/10.1088/1367-2630/10/9/093001
67.
67. M. Schultze, A. Wirth, I. Grguras, M. Uiberacker, T. Uphues, A. J. Verhoef, J. Gagnon, M. Hofstetter, U. Kleineberg, E. Goulielmakis, and F. Krausz, J. Electron Spectrosc. Relat. Phenom. 184, 68 (2011).
http://dx.doi.org/10.1016/j.elspec.2011.01.003
68.
68. T. Fuji, J. Rauschenberger, Ch. Gohle, A. Apolonski, Th. Udem, V. S. Yakovlev, G. Tempea, T. W. Hänsch, and F. Krausz, New. J. Phys. 7, 116 (2005).
http://dx.doi.org/10.1088/1367-2630/7/1/116
69.
69. J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, Opt. Lett. 22, 519 (1997).
http://dx.doi.org/10.1364/OL.22.000519
70.
70. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, Appl. Opt. 35, 5493 (1996).
http://dx.doi.org/10.1364/AO.35.005493
71.
71. V. Pervak, “Multi-octave dispersive optics” (unpublished).
72.
72. J. F. Whitaker, J. A. Valdmanis, M. Y. Frankel, S. Gupta, J. M. Chwalek, and G. A. Mourou, Microelectron. Eng. 12, 369 (1990).
http://dx.doi.org/10.1016/0167-9317(90)90050-4
73.
73. V. S. Yakovlev, J. Gagnon, N. Karpowicz, and F. Krausz, Phys. Rev. Lett. 105, 073001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.073001
74.
74. J. Itatani, F. Quéré, G. L. Yudin, M. Yu Ivanov, F. Krausz, and P. B. Corkum, Phys. Rev. Lett. 88, 173903 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.173903
75.
75. M. Kitzler, N. Milosevic, A. Scrinzi, F. Krausz, and T. Brabec, Phys. Rev. Lett. 88, 173904 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.173904
76.
76. X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. D. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, Phys. Rev. Lett. 103, 183901 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.183901
77.
77. H. Mashiko, M. J. Bell, A. R. Beck, M. J. Abel, P. M. Nagel, C. P. Steiner, J. Robinson, D. M. Neumark, and S. R. Leone, Opt. Express 18, 25887 (2010).
http://dx.doi.org/10.1364/OE.18.025887
78.
78. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
http://dx.doi.org/10.1063/1.1148286
79.
79. Y. Mairesse and F. Quéré, Phys. Rev. A 71, 011401 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.011401
80.
80. J. Gagnon, E. Goulielmakis, and V. S. Yakovlev, Appl. Phys. B: Lasers Opt. 92, 25 (2008).
http://dx.doi.org/10.1007/s00340-008-3063-x
81.
81. M. Ferray, A. L’ Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, J. Phys. B 21, L31 (1988).
http://dx.doi.org/10.1088/0953-4075/21/3/001
82.
82. J. Gagnon and V. Yakovlev, Appl. Phys. B: Lasers Opt. 103, 303 (2011).
http://dx.doi.org/10.1007/s00340-010-4358-2
83.
83. M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, Science 328, 1658 (2010).
http://dx.doi.org/10.1126/science.1189401
84.
84. C. Dorrer and I. A. Walmsley, J. Opt. Soc. Am. B 19, 1019 (2002).
http://dx.doi.org/10.1364/JOSAB.19.001019
85.
85. F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.243902
86.
86. F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schröder, N. Karpowicz, A. Mohammed Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
http://dx.doi.org/10.1364/OL.35.002248
87.
87. C. Homann, N. Krebs, and E. Riedle, Appl. Phys. B: Lasers Opt. 104, 783 (2011).
http://dx.doi.org/10.1007/s00340-011-4683-0
88.
88. T. Nagy and P. Simon, Opt. Express 17, 8144 (2009).
http://dx.doi.org/10.1364/OE.17.008144
89.
89. T. Fuji and T. Suzuki, Opt. Lett. 32, 3330 (2007).
http://dx.doi.org/10.1364/OL.32.003330
90.
90. F. Remacle, M. Nest, and R. D. Levine, Phys. Rev. Lett. 99, 183902 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.183902
91.
91. P. von den Hoff, R. Siemering, M. Kowalewski, and R. de Vivie-Riedle, IEEE J. Sel. Top Quantum Electron 18, 119 (2012).
http://dx.doi.org/10.1109/JSTQE.2011.2107893
92.
92. D. E. Leaird and A. M. Weiner, Opt. Lett. 24, 853 (1999).
http://dx.doi.org/10.1364/OL.24.000853
93.
93. E. Ozbay, Science 311, 189 (2006).
http://dx.doi.org/10.1126/science.1114849
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/11/10.1063/1.4758310
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Evolution of temporal control of light. Arrows denote the dynamical properties under control. (a) Confinement of light to incoherent flashes. (b) Femtosecond pulse shaping: control of cycle-integrated quantities of a light waveform. (c) Carrier envelope phase control of few-cycle pulses. (d) Subfemtosecond tailoring of light transients.

Image of FIG. 2.

Click to view

FIG. 2.

Principles of light field synthesis. (a) A light synthesizer is used to decompose a broadband light source into its constituent wavepackets. Upon the parallel modulation of their properties such as the relative phase (delay) or intensity the wavepackets are coherently superimposed to create a light waveform at the exit of the synthesizer (b) that can be sampled by an appropriate apparatus (c).

Image of FIG. 3.

Click to view

FIG. 3.

Superoctave light source in the visible and flanking ranges. (a) Supercontinuum generation in a Ne-filled hollow-core fiber pressurized at ∼3.5 bar. (b) The generated supercontinuum is spanning over more than two optical octaves (∼0.8 PHz or ∼3.3 eV) with nearly uniform intensity (∼20–30 dB). The light beam exits the hollow fiber chamber through a thin UV-grade fused silica window placed at the Brewster's angle to ensure broadband transmission.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Schematic representation of a prototypical three-channel superoctave light field synthesizer. DBS, dichroic beamsplitters; CM, chirped mirrors. (b) Photograph (perspective) of the light field synthesizer in operation. (The constituent channels have been visualized by scanning a transparent film through their beams whilst the shutter of the camera is set to an exposure of several seconds.) (c) Top view of the apparatus.

Image of FIG. 5.

Click to view

FIG. 5.

Dichroic beamsplitters (a) simulated reflectivity of the dichroic beamsplitters (DBSUV-VIS and DBSVIS-NIR). (b) Photograph of DBSUV-VIS and DBSVIS-NIR in action. (c) Simulated transmission of the individual channels of the optical field synthesizer. Blue (orange) line includes the reflectivity of two DBSUV-VIS (DBSVIS-NIR) and six chirped mirrors CMVIS-UV (CMVIS), whereas the red curve shows the calculated transmission based on six CMNIR.

Image of FIG. 6.

Click to view

FIG. 6.

(a) Spectra of pulses in the constituent channels of the synthesizer are shown in red for ChNIR (700 nm to 1100 nm), yellow for ChVIS (500 nm to 700 nm), and blue for ChVIS-UV (350 nm to 500 nm). The black line corresponds to the spectrum shown in Fig. 3(b). Here it is shown for comparison. Insets show photographs of the beam profiles of the individual channels taken at the exit of the apparatus. (b) TG-FROG traces recorded for the ChNIR, ChVIS, and ChVIS-UV pulses, respectively and (c) the retrieved temporal intensity (solid lines) and phase (dashed curves) profiles of the respective pulses. The thin black lines depict the intensity profiles of the corresponding bandwidth-limited pulses, with FWHM durations of τCh(NIR) = 6.8 fs, τCh(VIS) = 5 fs, and τCh(VIS-UV) = 4.5 fs.

Image of FIG. 7.

Click to view

FIG. 7.

Spatial superposition of the constituent beams in the field synthesizer (a) beam profiles for pulses in ChVIS-UV, ChVIS, and ChNIR in the focus of a (f = 40 cm) spherical mirror placed at the exit of the apparatus. The corresponding effective beam diameters are: (ChVIS-UV = 60 μm, ChVIS = 75 μm, ChNiR = 65 μm) (b) Tracing the focal profile of ChNIR (red line), ChVIS (orange line), and ChVIS-UV (blue line) by sampling their beam sizes through their confocal parameters. (c) Module for beam divergence control based on the adjustment of the curvature of a thin mirror installed in the beam path of ChVIS. The micrometric screw has a resolution of 300 μm/revolution. (d) Focal profiles of the beams of the three channels after optimizing the divergence of ChVIS with the module presented in (c).

Image of FIG. 8.

Click to view

FIG. 8.

Temporal synchronization of the constituent channels in the field synthesizer. (a) Schematic of the transient grating FROG apparatus. The input beam is divided into three identical beams via a spatial input mask. The three beams are in turn focused by a split concave mirror to a thin (∼100 μm) fused silica crystal that acts as the nonlinear medium. A piezoelectric actuator attached on one of the two D-shaped segments of the split mirror is used to introduce a delay with nanometric precision. The χ(3) nonlinearity of the process yields signal pulses considerably broader in comparison to the original pulses and results in spectral fringes at the spectral borders of adjacent channels and reveals a delay of several tens of femtoseconds between these channels (b) or temporal overlap to yield a single spectral fringe upon adjustment of the optical paths (c).

Image of FIG. 9.

Click to view

FIG. 9.

Active interferometric stabilization of the light field synthesizer. (a) A Glan-Thomson polarizer projects P and S polarized spectral components from adjacent channels on a common axis to generate spectral interference fringes recorded by the fiber spectrometer. (b) Interference fringes between channels ChVIS-UV and ChVIS (blue line) as well as ChVIS and ChNIR (red line) when the constituent pulses of the synthesizer are temporally overlapped at the exit of the synthesizer. (c) Phase drift between (ChVIS-UV and ChVIS) and (ChVIS and ChNIR) with the feedback loop turned on. The standard deviation of the phase drift between ChVIS-UV and ChVIS is ∼π/30 and ChVIS and ChNIR is ∼π/60. (d) Corresponding delay compensated for in ChVIS-UV and ChNIR to yield the results of (c).

Image of FIG. 10.

Click to view

FIG. 10.

Attosecond streaking technique and its basic elements. (a) Principles of attosecond light sampling based on the attosecond streaking technique. A synthesized light transient E TR (t), along with a synchronized attosecond EUV pulse, is focused into an atomic gas target. The EUV pulse knocks electrons free by photoionization at an instance t r . The field of light E TR (t > t r ) then imparts a momentum change Δp(t r ) (black arrows) to the freed electrons, which scales as the instantaneous value of the vector potential A TR (t r ) at the moment of release t r . The momentum change Δp(t r ) is recorded by an electron time-of-flight detector, placed along the direction of the linearly polarized E TR (t). (b) Schematic diagram of the experimental setup for sampling synthesized light field transients (see text for details). (c) Retrieved temporal intensity profile and spectral phase of the EUV pulse. (d) The beam profiles of the constituent channels on the focal plane on which synthesis and temporal characterization of light transients is been performed.

Image of FIG. 11.

Click to view

FIG. 11.

(a)–(c) Streaking spectrograms of a synthesized light transient sampled sequentially over a period of >1 h. (d) The corresponding retrieved electric field waveforms in comparison. The rms discrepancy between the sampled field waveforms is less than 0.09, suggesting excellent reproducibility of the synthesized fields. (e) The instantaneous intensity profiles of one of the waveforms shown in (d) further corroborate the extreme temporal confinement of the generated transients. In brackets, instantaneous intensities of the field crests normalized to that of the most intense field crest.

Image of FIG. 12.

Click to view

FIG. 12.

Designing a light transient. (a) Attosecond streaking spectrogram of a reference transient and (b) its corresponding retrieved field. (c) Decomposition of the retrieved field into its constituent channels reveals their detailed properties including their durations (t1). By the adjustment of the relative phases of ChVIS-UV by π/2 and of ChNIR by π, the design of a different waveform is possible (d). (e) The corresponding changes in the parameter space can be subsequently applied to the field synthesizer to synthesize the light transients experimentally (cf. Fig. 13).

Image of FIG. 13.

Click to view

FIG. 13.

Subcycle synthesis of light transients and their control. (a) to (d) Attosecond streaking spectrograms composed by photoelectron spectra normalized to their integral (left), the respective retrieved electric fields (red line), and the predicted field transients calculated from the previous light transient by applying the delay introduced experimentally (black line). The predicted theoretical electric fields are in good agreement with the measured electric field (middle) and instantaneous intensity (right). In brackets, instantaneous intensities of the field crests normalized to that of the most intense field crest. From (a) to (b) ChVIS-UV delayed by 200 as (∼π/4) with respect to the ChVIS and ChNIR, from (b) to (c) ChVIS-UV delayed by an additional 200 as (∼π/4), from (c) to (d) ChVIS-UV set to have the same relative delay setting with the other channels as in the original light transient (a). (d) Relative delays and ϕ CE 's of the individual channels are adjusted so as to create a complex nonsinusoidal transient with a field minimum in between them. (e) ChNIR is delayed by 1.45 fs (∼π).

Image of FIG. 14.

Click to view

FIG. 14.

Light transients under conventional analysis: (a) attosecond streaking spectrogram, (b) the retrieved electric field, and (c) temporal intensity profile (red) of sub-optical cycle pulse with a TFWHM ∼ 2.08 fs, incorporating ∼0.88 field cycles at the carrier wavelength of λ0 ∼ 710 nm compared to the bandwidth limited profile (blue).

Image of FIG. 15.

Click to view

FIG. 15.

Instantaneous intensity profile of synthesized light transients appropriate for (a) triggering ultrafast dynamics by strong field ionization of atoms, molecules or solids (b) coherent control of the creation of atomic coherences or the encoding of digital information at individual half-cycles to transmit and process information on the Pbit/s scale.

Tables

Generic image for table

Click to view

Table I.

Properties/capabilities of light waveforms in the pulse shaping and field synthesis realms of light control.

Loading

Article metrics loading...

/content/aip/journal/rsi/83/11/10.1063/1.4758310
2012-11-02
2014-04-23

Abstract

Ultimate control over light entails the capability of crafting its field waveform. Here, we detail the technological advances that have recently permitted the synthesis of light transients confinable to less than a single oscillation of its carrier wave and the precise attosecond tailoring of their fields. Our work opens the door to light field based control of electrons on the atomic, molecular, and mesoscopic scales.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/83/11/1.4758310.html;jsessionid=8mm6pg319ejrt.x-aip-live-02?itemId=/content/aip/journal/rsi/83/11/10.1063/1.4758310&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Invited Article: Attosecond photonics: Synthesis and control of light transients
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/11/10.1063/1.4758310
10.1063/1.4758310
SEARCH_EXPAND_ITEM