1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Invited Article: Attosecond photonics: Synthesis and control of light transients
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/83/11/10.1063/1.4758310
1.
1. H. Abraham and T. Lemoine, Compt. Rend. 129, 206 (1899).
2.
2. T. H. Maiman, Nature (London) 187, 493 (1960).
http://dx.doi.org/10.1038/187493a0
3.
3. M. Dantus, R. M. Bowman, and A. H. Zewail, Nature (London) 343, 737 (1990).
http://dx.doi.org/10.1038/343737a0
4.
4. Ahmed H. Zewail, J. Phys. Chem. A 104, 5660 (2000).
http://dx.doi.org/10.1021/jp001460h
5.
5. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, Nature (London) 414, 509 (2001).
http://dx.doi.org/10.1038/35107000
6.
6. Y. Mairesse, A. de Bohan, L. J. Frasinski, H. Merdji, L. C. Dinu, P. Monchicourt, P. Breger, M. Kovačev, R. Taïeb, B. Carré, H. G. Muller, P. Agostini, and P. Salières, Science 302, 1540 (2003).
http://dx.doi.org/10.1126/science.1090277
7.
7. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, Nature (London) 419, 803 (2002).
http://dx.doi.org/10.1038/nature01143
8.
8. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Nature (London) 427, 817 (2004).
http://dx.doi.org/10.1038/nature02277
9.
9. E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, Nature (London) 466, 739 (2010).
http://dx.doi.org/10.1038/nature09212
10.
10. C. Froehly, B. Colombeau, and M. Vampouille, in Progress in Optics, edited by E. Wolf (Elsevier, 1983), Vol. 20, p. 63.
11.
11. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
http://dx.doi.org/10.1063/1.1150614
12.
12. O. E. Martinez, J. P. Gordon, and R. L. Fork, J. Opt. Soc. Am. A 1, 1003 (1984).
http://dx.doi.org/10.1364/JOSAA.1.001003
13.
13. E. Treacy, IEEE J. Quantum Electron. 5, 454 (1969).
http://dx.doi.org/10.1109/JQE.1969.1076303
14.
14. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert II, IEEE J. Quantum Electron. 28, 908 (1992).
http://dx.doi.org/10.1109/3.135209
15.
15. A. Weiner, Ultrafast Optics (Wiley, New Jersey, 2009).
16.
16. S. T. Cundiff and A. M. Weiner, Nat. Photon. 4, 760 (2010).
http://dx.doi.org/10.1038/nphoton.2010.196
17.
17. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, Opt. Lett. 25, 575 (2000).
http://dx.doi.org/10.1364/OL.25.000575
18.
18. T. Brixner and G. Gerber, Opt. Lett. 26, 557 (2001).
http://dx.doi.org/10.1364/OL.26.000557
19.
19. W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
http://dx.doi.org/10.1126/science.259.5101.1581
20.
20. P. W. Brumer and M. Shapiro, Principles of the Quantum Control of Molecular Processes (Wiley-Interscience, New Jersey, 2003).
21.
21. T. Brixner, N. H. Damrauer, and G. Gerber, in Advances in Atomic, Molecular, and Optical Physics, edited by B. Benjamin and W. Herbert (Academic, 2001), Vol. 46, pp. 1.
22.
22. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
http://dx.doi.org/10.1126/science.282.5390.919
23.
23. M. Wollenhaupt, V. Engel, and T. Baumert, Ann. Rev. Phys. Chem. 56, 25 (2005).
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141315
24.
24. S. T. Cundiff, J. Phys. D: Appl. Phys. 35, R43 (2002).
http://dx.doi.org/10.1088/0022-3727/35/8/201
25.
25. L. Xu, Ch. Spielmann, F. Krausz, and R. Szipöcs, Opt. Lett. 21, 1259 (1996).
http://dx.doi.org/10.1364/OL.21.001259
26.
26. J. Reichert, R. Holzwarth, Th. Udem, and T. W. Hänsch, Opt. Commun. 172, 59 (1999).
http://dx.doi.org/10.1016/S0030-4018(99)00491-5
27.
27. A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.740
28.
28. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
http://dx.doi.org/10.1126/science.288.5466.635
29.
29. Th. Udem, R. Holzwarth, and T. W. Hansch, Nature (London) 416, 233 (2002).
http://dx.doi.org/10.1038/416233a
30.
30. S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, Nat. Photon. 4, 462 (2010).
http://dx.doi.org/10.1038/nphoton.2010.91
31.
31. T. W. Hänsch, Rev. Mod. Phys. 78, 1297 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.1297
32.
32. A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, Nature (London) 421, 611 (2003).
http://dx.doi.org/10.1038/nature01414
33.
33. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.163
34.
34. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, Science 320, 1614 (2008).
http://dx.doi.org/10.1126/science.1157846
35.
35. E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Science 305, 1267 (2004).
http://dx.doi.org/10.1126/science.1100866
36.
36. J. Mauritsson, T. Remetter, M. Swoboda, K. Klünder, A. L’Huillier, K. J. Schafer, O. Ghafur, F. Kelkensberg, W. Siu, P. Johnsson, M. J. J. Vrakking, I. Znakovskaya, T. Uphues, S. Zherebtsov, M. F. Kling, F. Lépine, E. Benedetti, F. Ferrari, G. Sansone, and M. Nisoli, Phys. Rev. Lett. 105, 053001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.053001
37.
37. M. F. Kling, Ch. Siedschlag, A. J. Verhoef, J. I. Khan, M. Schultze, Th. Uphues, Y. Ni, M. Uiberacker, M. Drescher, F. Krausz, and M. J. J. Vrakking, Science 312, 246 (2006).
http://dx.doi.org/10.1126/science.1126259
38.
38. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, Science 314, 443 (2006).
http://dx.doi.org/10.1126/science.1132838
39.
39. A. L. Cavalieri, N. Muller, Th Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blumel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, Nature (London) 449, 1029 (2007).
http://dx.doi.org/10.1038/nature06229
40.
40. A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, Science 334, 195 (2011).
http://dx.doi.org/10.1126/science.1210268
41.
41. S. E. Harris and A. V. Sokolov, Phys. Rev. Lett. 81, 2894 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.2894
42.
42. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 85, 562 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.562
43.
43. T. Suzuki, M. Hirai, and M. Katsuragawa, Phys. Rev. Lett. 101, 243602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.243602
44.
44. J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta, Phys. Rev. Lett. 85, 2474 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.2474
45.
45. Z.-M. Hsieh, C.-J. Lai, H.-S. Chan, S.-Y. Wu, C.-K. Lee, W.-J. Chen, C.-L. Pan, F.-G. Yee, and A. H. Kung, Phys. Rev. Lett. 102, 213902 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.213902
46.
46. S. Baker, I. A. Walmsley, J. W. G. Tisch, and J. P. Marangos, Nat. Photon. 5, 664 (2011).
http://dx.doi.org/10.1038/nphoton.2011.256
47.
47. H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
http://dx.doi.org/10.1126/science.1198397
48.
48. R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
http://dx.doi.org/10.1126/science.1061754
49.
49. M. Yamashita, K. Yamane, and R. Morita, IEEE J. Sel. Top Quantum Electron. 12, 213 (2006).
http://dx.doi.org/10.1109/JSTQE.2006.871961
50.
50. S. Rausch, T. Binhammer, A. Harth, F. X. Krtner, and U. Morgner, Opt. Express 16, 17410 (2008).
http://dx.doi.org/10.1364/OE.16.017410
51.
51. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, Nat. Photon. 4, 33 (2010).
http://dx.doi.org/10.1038/nphoton.2009.258
52.
52. S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kartner, Nat. Photon. 5, 475 (2011).
http://dx.doi.org/10.1038/nphoton.2011.140
53.
53. E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, Science 317, 769 (2007).
http://dx.doi.org/10.1126/science.1142855
54.
54. M. Maier, W. Kaiser, and J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966).
http://dx.doi.org/10.1103/PhysRevLett.17.1275
55.
55. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
http://dx.doi.org/10.1364/OL.23.000792
56.
56. C. Yan and J.-C. Diels, J. Opt. Soc. Am. B 8, 1259 (1991).
http://dx.doi.org/10.1364/JOSAB.8.001259
57.
57. I. A. Walmsley and V. Wong, J. Opt. Soc. Am. B 13, 2453 (1996).
http://dx.doi.org/10.1364/JOSAB.13.002453
58.
58. R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
http://dx.doi.org/10.1364/JOSAA.10.001101
59.
59. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, Opt. Lett. 22, 522 (1997).
http://dx.doi.org/10.1364/OL.22.000522
60.
60. A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, New. J. Phys. 9, 242 (2007).
http://dx.doi.org/10.1088/1367-2630/9/7/242
61.
61. U. Graf, M. Fieß, M. Schultze, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Express 16, 18956 (2008).
http://dx.doi.org/10.1364/OE.16.018956
62.
62. R. Szipöcs, K. Ferencz, Ch. Spielmann, and F. Krausz, Opt. Lett. 19, 201 (1994).
http://dx.doi.org/10.1364/OL.19.000201
63.
63. V. Pervak, Appl. Opt. 50, C55 (2011).
http://dx.doi.org/10.1364/AO.50.000C55
64.
64. M. Z. Aleksei, Phys.-Usp. 49, 605 (2006).
http://dx.doi.org/10.1070/PU2006v049n06ABEH005975
65.
65. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Baltimore, MD, 2006).
66.
66. E. E. Serebryannikov et al., New. J. Phys. 10, 093001 (2008).
http://dx.doi.org/10.1088/1367-2630/10/9/093001
67.
67. M. Schultze, A. Wirth, I. Grguras, M. Uiberacker, T. Uphues, A. J. Verhoef, J. Gagnon, M. Hofstetter, U. Kleineberg, E. Goulielmakis, and F. Krausz, J. Electron Spectrosc. Relat. Phenom. 184, 68 (2011).
http://dx.doi.org/10.1016/j.elspec.2011.01.003
68.
68. T. Fuji, J. Rauschenberger, Ch. Gohle, A. Apolonski, Th. Udem, V. S. Yakovlev, G. Tempea, T. W. Hänsch, and F. Krausz, New. J. Phys. 7, 116 (2005).
http://dx.doi.org/10.1088/1367-2630/7/1/116
69.
69. J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, Opt. Lett. 22, 519 (1997).
http://dx.doi.org/10.1364/OL.22.000519
70.
70. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, Appl. Opt. 35, 5493 (1996).
http://dx.doi.org/10.1364/AO.35.005493
71.
71. V. Pervak, “Multi-octave dispersive optics” (unpublished).
72.
72. J. F. Whitaker, J. A. Valdmanis, M. Y. Frankel, S. Gupta, J. M. Chwalek, and G. A. Mourou, Microelectron. Eng. 12, 369 (1990).
http://dx.doi.org/10.1016/0167-9317(90)90050-4
73.
73. V. S. Yakovlev, J. Gagnon, N. Karpowicz, and F. Krausz, Phys. Rev. Lett. 105, 073001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.073001
74.
74. J. Itatani, F. Quéré, G. L. Yudin, M. Yu Ivanov, F. Krausz, and P. B. Corkum, Phys. Rev. Lett. 88, 173903 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.173903
75.
75. M. Kitzler, N. Milosevic, A. Scrinzi, F. Krausz, and T. Brabec, Phys. Rev. Lett. 88, 173904 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.173904
76.
76. X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. D. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, Phys. Rev. Lett. 103, 183901 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.183901
77.
77. H. Mashiko, M. J. Bell, A. R. Beck, M. J. Abel, P. M. Nagel, C. P. Steiner, J. Robinson, D. M. Neumark, and S. R. Leone, Opt. Express 18, 25887 (2010).
http://dx.doi.org/10.1364/OE.18.025887
78.
78. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
http://dx.doi.org/10.1063/1.1148286
79.
79. Y. Mairesse and F. Quéré, Phys. Rev. A 71, 011401 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.011401
80.
80. J. Gagnon, E. Goulielmakis, and V. S. Yakovlev, Appl. Phys. B: Lasers Opt. 92, 25 (2008).
http://dx.doi.org/10.1007/s00340-008-3063-x
81.
81. M. Ferray, A. L’ Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, J. Phys. B 21, L31 (1988).
http://dx.doi.org/10.1088/0953-4075/21/3/001
82.
82. J. Gagnon and V. Yakovlev, Appl. Phys. B: Lasers Opt. 103, 303 (2011).
http://dx.doi.org/10.1007/s00340-010-4358-2
83.
83. M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, Science 328, 1658 (2010).
http://dx.doi.org/10.1126/science.1189401
84.
84. C. Dorrer and I. A. Walmsley, J. Opt. Soc. Am. B 19, 1019 (2002).
http://dx.doi.org/10.1364/JOSAB.19.001019
85.
85. F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.243902
86.
86. F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schröder, N. Karpowicz, A. Mohammed Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
http://dx.doi.org/10.1364/OL.35.002248
87.
87. C. Homann, N. Krebs, and E. Riedle, Appl. Phys. B: Lasers Opt. 104, 783 (2011).
http://dx.doi.org/10.1007/s00340-011-4683-0
88.
88. T. Nagy and P. Simon, Opt. Express 17, 8144 (2009).
http://dx.doi.org/10.1364/OE.17.008144
89.
89. T. Fuji and T. Suzuki, Opt. Lett. 32, 3330 (2007).
http://dx.doi.org/10.1364/OL.32.003330
90.
90. F. Remacle, M. Nest, and R. D. Levine, Phys. Rev. Lett. 99, 183902 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.183902
91.
91. P. von den Hoff, R. Siemering, M. Kowalewski, and R. de Vivie-Riedle, IEEE J. Sel. Top Quantum Electron 18, 119 (2012).
http://dx.doi.org/10.1109/JSTQE.2011.2107893
92.
92. D. E. Leaird and A. M. Weiner, Opt. Lett. 24, 853 (1999).
http://dx.doi.org/10.1364/OL.24.000853
93.
93. E. Ozbay, Science 311, 189 (2006).
http://dx.doi.org/10.1126/science.1114849
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/11/10.1063/1.4758310
Loading
/content/aip/journal/rsi/83/11/10.1063/1.4758310
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/83/11/10.1063/1.4758310
2012-11-02
2014-09-23

Abstract

Ultimate control over light entails the capability of crafting its field waveform. Here, we detail the technological advances that have recently permitted the synthesis of light transients confinable to less than a single oscillation of its carrier wave and the precise attosecond tailoring of their fields. Our work opens the door to light field based control of electrons on the atomic, molecular, and mesoscopic scales.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/83/11/1.4758310.html;jsessionid=hziyur9gsjf8.x-aip-live-03?itemId=/content/aip/journal/rsi/83/11/10.1063/1.4758310&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Invited Article: Attosecond photonics: Synthesis and control of light transients
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/11/10.1063/1.4758310
10.1063/1.4758310
SEARCH_EXPAND_ITEM