1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Invited Review Article: High-speed flexure-guided nanopositioning: Mechanical design and control issues
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/83/12/10.1063/1.4765048
1.
1. S. Devasia, E. Eleftheriou, and S. O. R. Moheimani, IEEE Trans. Control Syst. Technol. 15, 802 (2007).
http://dx.doi.org/10.1109/TCST.2007.903345
2.
2. G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.930
3.
3. S. M. Salapaka and M. V. Salapaka, IEEE Control Syst. Mag. 28, 65 (2008).
http://dx.doi.org/10.1109/MCS.2007.914688
4.
4. R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy (Cambridge University Press, Cambridge, 1994).
5.
5. T. Ando, N. Kodera, T. Uchihashi, A. Miyagi, R. Nakakita, H. Yamashita, and K. Matada, e-J. Surf. Sci. Nanotechnol. 3, 384 (2005).
http://dx.doi.org/10.1380/ejssnt.2005.384
6.
6. Q. Zou, K. K. Leang, E. Sadoun, M. J. Reed, and S. Devasia, Asian J. Control 6, 164 (2004).
http://dx.doi.org/10.1111/j.1934-6093.2004.tb00195.x
7.
7. R. B. Salazar, A. Shovsky, H. Schnherr, and G. J. Vancso, Small 2, 1274 (2006).
http://dx.doi.org/10.1002/smll.200600235
8.
8. S. Gonda, T. Kurosawa, and Y. Tanimura, Meas. Sci. Technol. 10, 986 (1999).
http://dx.doi.org/10.1088/0957-0233/10/11/302
9.
9. A. D. Mazzeo, A. J. Stein, D. L. Trumper, and R. J. Hocken, Precis. Eng. 33, 135 (2009).
http://dx.doi.org/10.1016/j.precisioneng.2008.04.007
10.
10. D. L. White and O. R. Wood, Rev. Sci. Instrum. 18, 3552 (2000).
http://dx.doi.org/10.1116/1.1319706
11.
11. K.-B. Choi and J. J. Lee, Rev. Sci. Instrum. 76, 075106 (2005).
http://dx.doi.org/10.1063/1.1948401
12.
12. B. A. Wacaser, M. J. Maughan, I. A. Mowat, T. L. Niederhauser, M. R. Linford, and R. C. Davis, Appl. Phys. Lett. 82, 808 (2003).
http://dx.doi.org/10.1063/1.1535267
13.
13. G. M. Whitesides and J. C. Love, Sci. Am. 285, 32 (2001).
http://dx.doi.org/10.1038/scientificamerican0907-12sp
14.
14. B. Bhushan, Handbook of Micro/Nanotribology, 2nd ed. (CRC, Boca Raton, 1999).
15.
15. S. Sundararajan and B. Bhushan, Sens. Actuators, A 101, 338 (2002).
http://dx.doi.org/10.1016/S0924-4247(02)00268-6
16.
16. K. Yamanaka, A. Noguchi, T. Tsuji, T. Koike, and T. Goto, Surf. Interface Anal. 27, 600 (1999).
http://dx.doi.org/10.1002/(SICI)1096-9918(199905/06)27:5/6<600::AID-SIA508>3.0.CO;2-W
17.
17. E. L. Leite and P. S. P. Herrmann, Atomic Force Microscopy in Adhesion Studies (VSP, 2005), Chap. 1, pp. 343.
18.
18. P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Dürig, B. Gotsmann, W. Häberle, M. A. Lantz, H. E. Rothuizen, R. Stutz, and G. K. Binnig, IEEE Trans. Nanotechnol. 1, 39 (2002).
http://dx.doi.org/10.1109/TNANO.2002.1005425
19.
19. A. Sebastian, A. Pantazi, S. O. R. Moheimani, H. Pozidis, and E. Eleftheriou, IEEE Trans. Nanotechnol. 7, 586 (2008).
http://dx.doi.org/10.1109/TNANO.2008.926441
20.
20. B. J. Kenton and K. K. Leang, IEEE/ASME Trans. Mechatron. 17, 356 (2012).
http://dx.doi.org/10.1109/TMECH.2011.2105499
21.
21. Y. K. Yong, B. Bhikkaji, and S. O. R. Moheimani, “Design, Modeling and FPAA-based Control of a High-speed Atomic Force Microscope Nanopositioner,” IEEE/ASME Trans. Mechatron. (to be published).
http://dx.doi.org/10.1109/TMECH.2012.2194161
22.
22. T. Ando, T. Uchihashi, N. Kodera, D. Yamamoto, M. Taniguchi, A. Miyagi, and H. Yamashita, J. Mol. Recognit. 20, 448 (2007).
http://dx.doi.org/10.1002/jmr.843
23.
23. L. M. Picco, L. Bozec, A. Ulcinas, D. J. Engledew, M. Antognozzi, M. A. Horton, and M. J. Miles, Nanotechnology 18, 044030 (2007).
http://dx.doi.org/10.1088/0957-4484/18/4/044030
24.
24. D. Croft, G. Shedd, and S. Devasia, ASME J. Dyn. Syst., Meas., Control 123, 35 (2001).
http://dx.doi.org/10.1115/1.1341197
25.
25. K. K. Leang and S. Devasia, IEEE Trans. Control Syst. Technol. 15, 927 (2007).
http://dx.doi.org/10.1109/TCST.2007.902956
26.
26. S. O. R. Moheimani, Rev. Sci. Instrum. 79, 071101 (2008).
http://dx.doi.org/10.1063/1.2957649
27.
27. G. M. Clayton, S. Tien, K. K. Leang, Q. Zou, and S. Devasia, ASME J. Dyn. Syst., Meas., Control 131, 061101 (2009).
http://dx.doi.org/10.1115/1.4000158
28.
28. B. J. Kenton, A. J. Fleming, and K. K. Leang, Rev. Sci. Instrum. 82, 123703 (2011).
http://dx.doi.org/10.1063/1.3664613
29.
29. G. Schitter, W. F. Rijkee, and N. Phan, in Proceedings of the IEEE Conference on Decision and Control (IEEE, Cancun, Mexico, 2008), pp. 51765181.
30.
30. A. J. Fleming, B. J. Kenton, and K. K. Leang, Ultramicroscopy 110, 1205 (2010).
http://dx.doi.org/10.1016/j.ultramic.2010.04.016
31.
31. S. Kuiper, A. Fleming, and G. Schitter, in Proceedings of the IFAC Symposium on Mechatronic Systems (IFAC, Cambridge, MA, 2010), pp. 220226.
32.
32. Q. Zhong, D. Inniss, K. Kjoller, and V. Elings, Surf. Sci. 290, L688 (1993).
http://dx.doi.org/10.1016/0039-6028(93)90582-5
33.
33. T. Ando, T. Uchihashi, and T. Fukuma, Prog. Surf. Sci. 83, 337 (2008).
http://dx.doi.org/10.1016/j.progsurf.2008.09.001
34.
34. D. Abramovitch, S. Andersson, L. Pao, and G. Schitter, in Proceedings of the American Control Conference, 2007 (IEEE, 2007), pp. 34883502.
35.
35. K. K. Leang and A. J. Fleming, Asian J. Control 11, 144 (2009).
http://dx.doi.org/10.1002/asjc.90
36.
36. T. Ando, T. Uchihashi, N. Kodera, D. Yamamoto, A. Miyagi, M. Taniguchi, and H. Yamashita, Eur. J. Physiol. 456, 211 (2008).
http://dx.doi.org/10.1007/s00424-007-0406-0
37.
37. G. Schitter, K. J. Åstrom, B. DeMartini, P. J. Thurner, K. L. Turner, and P. K. Hansma, IEEE Trans. Control Syst. Technol. 15, 906 (2007).
http://dx.doi.org/10.1109/TCST.2007.902953
38.
38. Y. K. Yong and S. O. R. Moheimani, in Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE/ASME, Montreal, Canada, 2010).
39.
39. A. Fleming, IEEE Trans. Control Syst. Technol. 19, 156 (2011).
http://dx.doi.org/10.1109/TCST.2010.2040282
40.
40. S. Salapaka, A. Sebastian, J. P. Cleveland, and M. V. Salapaka, Rev. Sci. Instrum. 73, 3232 (2002).
http://dx.doi.org/10.1063/1.1499533
41.
41. A. D. L. Humphris, M. J. Miles, and J. K. Hobbs, Appl. Phys. Lett. 86, 0341063 (2005).
http://dx.doi.org/10.1063/1.1855407
42.
42. M. B. Viani, T. E. Schäffer, A. Chand, M. Rief, H. Gaub, and P. K. Hansma, J. Appl. Phys. 86, 2258 (1999).
http://dx.doi.org/10.1063/1.371039
43.
43. M. B. Viani, T. E. Schäffer, G. T. Paloczi, L. I. Pietrasanta, B. L. Smith, J. B. Thompson, M. Richter, M. Rief, H. E. Gaub, K. W. Plaxco, A. N. Cleland, H. G. Hansma, and P. K. Hansma, Rev. Sci. Instrum. 70, 4300 (1999).
http://dx.doi.org/10.1063/1.1150069
44.
44. T. Ando, T. Uchihashi, N. Kodera, A. Miyagi, R. Nakakita, H. Yamashita, and M. Sakashita, Jpn. J. Appl. Phys. 45, 1897 (2006).
http://dx.doi.org/10.1143/JJAP.45.1897
45.
45. G. E. Fantner, G. Schitter, J. H. Kindt, T. Ivanov, K. Ivanova, R. Patel, N. Holten-Andersen, J. Adams, P. J. Thurner, I. W. Rangelow, and P. K. Hansma, Ultramicroscopy 106, 881 (2006).
http://dx.doi.org/10.1016/j.ultramic.2006.01.015
46.
46. G. Schitter, P. Menold, H. F. Knapp, F. Allgöwer, and A. Stemmer, Rev. Sci. Instrum. 72, 3320 (2001).
http://dx.doi.org/10.1063/1.1387253
47.
47. Y. K. Yong and S. O. R. Moheimani, in Proceedings of the IEEE International Conference on Robotics and Automation, Saint Paul, MN, 2012.
48.
48. G. E. Fantner, P. Hegarty, J. H. Kindt, G. Schitter, G. A. G. Cidade, and P. K. Hansma, Rev. Sci. Instrum. 76, 026118 (2005).
http://dx.doi.org/10.1063/1.1850651
49.
49. G. Schitter and A. Stemmer, IEEE Trans. Control Syst. Technol. 12, 449 (2004).
http://dx.doi.org/10.1109/TCST.2004.824290
50.
50. T. Fujii, M. Suzuki, M. Yamaguchi, R. Kawaguchi, H. Yamada, and K. Nakayama, Nanotechnology 6, 121 (1995).
http://dx.doi.org/10.1088/0957-4484/6/4/003
51.
51. S. O. R. Moheimani and Y. K. Yong, Rev. Sci. Instrum. 79, 073702 (2008).
http://dx.doi.org/10.1063/1.2952506
52.
52. A. J. Fleming, A. G. Wills, and S. O. R. Moheimani, IEEE Trans. Control Syst. Technol. 15, 1265 (2008).
http://dx.doi.org/10.1109/TCST.2008.921798
53.
53. Y. K. Yong, B. Ahmed, and S. O. R. Moheimani, Rev. Sci. Instrum. 81, 033701 (2010).
http://dx.doi.org/10.1063/1.3314901
54.
54. Y. Shan, J. E. Speich, and K. K. Leang, IEEE/ASME Trans. Mechatron. 13, 700 (2008).
http://dx.doi.org/10.1109/TMECH.2008.2005407
55.
55. O. M. E. Rifai and K. Youcef-Toumi, in Proceedings of the American Control Conference (IEEE, 2001), Vol. 4, pp. 32513255.
56.
56. F. Marinello, S. Carmignato, A. Voltan, E. Savio, and L. D. Chiffre, J. Manuf. Sci. Eng. 132, 030903 (2010).
http://dx.doi.org/10.1115/1.4001242
57.
57. M. J. Rost, L. Crama, P. Schakel, E. van Tol, G. B. E. M. van Velzen-Williams, C. F. Overgauw, H. ter Horst, H. Dekker, B. Okhuijsen, M. Seynen, A. Vijftigschild, P. Han, A. J. Katan, K. Schoots, R. Schumm, W. van Loo, T. H. Oosterkamp, and J. W. M. Frenken, Rev. Sci. Instrum. 76, 053710 (2005).
http://dx.doi.org/10.1063/1.1915288
58.
58.Asylum research, see http://asylumresearch.com for information on flexure-based nanopositioning platforms.
59.
59.Park Systems, see www.parkafm.com for information on the use of flexure-based nanopositioning platforms in commercially available AFMs.
60.
60. A. D. L. Humphris, B. Zhao, D. Catto, J. P. Howard-Knight, P. Kohli, and J. K. Hobbs, Rev. Sci. Instrum. 82, 043710 (2011).
http://dx.doi.org/10.1063/1.3584935
61.
61. Y. K. Yong, S. Aphale, and S. O. R. Moheimani, IEEE Trans. Nanotechnol. 8, 46 (2009).
http://dx.doi.org/10.1109/TNANO.2008.2005829
62.
62. J. H. Kindt, G. E. Fantner, J. A. Cutroni, and P. K. Hansma, Ultramicroscopy 100, 259 (2004).
http://dx.doi.org/10.1016/j.ultramic.2003.11.009
63.
63. Y. K. Yong, A. J. Fleming, and S. O. R. Moheimani, “A Novel Piezoelectric Strain Sensor for Simultaneous Damping and Tracking Control of a High-speed Nanopositioner,” IEEE/ASME Trans. Mechatron. (to be published).
http://dx.doi.org/10.1109/TMECH.2012.2193895
64.
64. Y. K. Yong and T.-F. Lu, Mech. Mach. Theory 44, 1156 (2009).
http://dx.doi.org/10.1016/j.mechmachtheory.2008.09.005
65.
65. N. Lobontiu, Compliant Mechanisms: Design of Flexure Hinges (CRC, 2003).
66.
66. L. Howell, Compliant Mechanisms (Wiley, 2001).
67.
67. T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito, and A. Toda, Proc. Natl. Acad. Sci. U.S.A. 98, 12468 (2001).
http://dx.doi.org/10.1073/pnas.211400898
68.
68. S. Wadikhaye, Y. K. Yong, and S. O. R. Moheimani, Micro Nano Lett. 7, 309 (2012).
http://dx.doi.org/10.1049/mnl.2011.0477
69.
69. Y. K. Yong and T.-F. Lu, Mech. Mach. Theory 43, 347 (2008).
http://dx.doi.org/10.1016/j.mechmachtheory.2007.03.007
70.
70. T.-F. Lu, D. C. Handley, Y. K. Yong, and C. Eales, Ind. Robot. 31, 355 (2004).
http://dx.doi.org/10.1108/01439910410541873
71.
71. Micropositioning, Nanopositioning, Nanoautomation: Solutions for Cutting-Edge Technologies (Physik Instrumente Catalog, 2010).
72.
72. S. S. Aphale, S. Devasia, and S. O. R. Moheimani, Nanotechnology 19, 125503 (2008).
http://dx.doi.org/10.1088/0957-4484/19/12/125503
73.
73. Y. Li and Q. Xu, Mech. Mach. Theory 44, 2127 (2009).
http://dx.doi.org/10.1016/j.mechmachtheory.2009.06.002
74.
74. Y. Li and Q. Xu, IEEE/ASME Trans. Mechatron. 15, 125 (2010).
http://dx.doi.org/10.1109/TMECH.2009.2026473
75.
75. S. K. Hung, in Proceedings of the International Workshop on Tip-Based Nanofabrication, Taipei, Taiwan (TBN2008, 2008), pp. p101p1010.
76.
76. I. A. Mahmood, S. O. R. Moheimani, and B. Bhikkaji, IEEE Trans. Nanotechnol. 10, 203 (2010).
http://dx.doi.org/10.1109/TNANO.2009.2036844
77.
77. Y. K. Yong, S. O. R. Moheimani, and I. R. Petersen, Nanotechnology 21, 365503 (2010).
http://dx.doi.org/10.1088/0957-4484/21/36/365503
78.
78. A. Bazaei, Y. K. Yong, and S. O. R. Moheimani, Rev. Sci. Instrum. 83, 063701 (2012).
http://dx.doi.org/10.1063/1.4725525
79.
79. T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, Nanotechnology 23, 185501 (2012).
http://dx.doi.org/10.1088/0957-4484/23/18/185501
80.
80. F. Scire and E. Teague, Rev. Sci. Instrum. 49, 1735 (1978).
http://dx.doi.org/10.1063/1.1135327
81.
81. G. Schitter, P. J. Thurner, and P. K. Hansma, Mechatronics 18, 282 (2008).
http://dx.doi.org/10.1016/j.mechatronics.2008.02.007
82.
82. B. J. Kenton, “Design, characterization, and control of a high-bandwidth serial-kinematic nanopositioning stage for scanning probe microscopy applications,” Master's thesis, University of Nevada, Reno, 2010.
83.
83. P. West, “Introduction to atomic force microscopy: Theory, practice and applications,” see http://www.paulwestphd.com.
84.
84. D. Ricci and P. C. Braga, Atomic Force Microscopy: Biomedical Methods and Applications, Methods in Molecular Biology Vol. 242 (Humana, 2004), pp. 2537.
85.
85. S. B. Velegol, S. Pardi, X. Li, D. Velegol, and B. E. Logan, Langmuir 19, 851 (2003), see http://pubs.acs.org/doi/pdf/10.1021/la026440g.
http://dx.doi.org/10.1021/la026440g
86.
86. Y. K. Yong, K. Liu, and S. O. R. Moheimani, IEEE Trans. Control Syst. Technol. 18, 1172 (2010).
http://dx.doi.org/10.1109/TCST.2009.2033201
87.
87. X. Tian, N. Xi, Z. Dong, and Y. Wang, Ultramicroscopy 105, 336 (2005).
http://dx.doi.org/10.1016/j.ultramic.2005.06.046
88.
88. S. Tien, Q. Zou, and S. Devasia, IEEE Trans. Control Syst. Technol. 13, 921 (2005).
http://dx.doi.org/10.1109/TCST.2005.854334
89.
89. A. J. Fleming, Rev. Sci. Instrum. 81, 1037011 (2010).
http://dx.doi.org/10.1063/1.3488359
90.
90. K. K. Leang, Q. Zou, and S. Devasia, IEEE Control Syst. Mag. 29, 70 (2009) (Special issue on hysteresis).
http://dx.doi.org/10.1109/MCS.2008.930922
91.
91. G. Schitter, R. W. Stark, and A. Stemmer, Ultramicroscopy 100, 253 (2004).
http://dx.doi.org/10.1016/j.ultramic.2003.11.008
92.
92. A. J. Fleming, S. Aphale, and S. O. R. Moheimani, IEEE Trans. Nanotechnol. 9, 438 (2010).
http://dx.doi.org/10.1109/TNANO.2009.2032418
93.
93. B. Mokaberi and A. A. G. Requicha, IEEE Trans. Autom. Sci. Eng. 5, 197 (2008).
http://dx.doi.org/10.1109/TASE.2007.895008
94.
94. W. D. Callister, Materials Science and Engineering: An Introduction (Wiley, New York, 1994).
95.
95. J. M. Paros and L. Weisbord, Mach. Des. 37, 151 (1965).
96.
96. Y. M. Tseytlin, Rev. Sci. Instrum. 73, 3363 (2002).
http://dx.doi.org/10.1063/1.1499761
97.
97. W. Xu and T. King, Precis. Eng. 19, 4 (1996).
http://dx.doi.org/10.1016/0141-6359(95)00056-9
98.
98. Y. K. Yong, T.-F. Lu, and D. C. Handley, Precis. Eng. 32, 63 (2008).
http://dx.doi.org/10.1016/j.precisioneng.2007.05.002
99.
99. W. O. Schotborgh, F. G. Kokkeler, H. Tragter, and F. J. van Houten, Precis. Eng. 29, 41 (2005).
http://dx.doi.org/10.1016/j.precisioneng.2004.04.003
100.
100. N. Lobontiu, J. S. N. Paine, E. Garcia, and M. Goldfarb, ASME Trans. J. Mech. Des. 123, 346 (2001).
http://dx.doi.org/10.1115/1.1372190
101.
101. S. T. Smith, V. G. Badami, J. S. Dale, and Y. Xu, Rev. Sci. Instrum. 68, 1474 (1997).
http://dx.doi.org/10.1063/1.1147635
102.
102. N. Lobontiu, J. S. N. Paine, E. Garcia, and M. Goldfarb, Mech. Mach. Theory 37, 477 (2002).
http://dx.doi.org/10.1016/S0094-114X(02)00002-2
103.
103. S. Smith, D. Chetwynd, and D. Bowen, J. Phys. E 20, 977 (1987).
http://dx.doi.org/10.1088/0022-3735/20/8/005
104.
104. Y. Wu and Z. Zhou, Rev. Sci. Instrum. 73, 3101 (2002).
http://dx.doi.org/10.1063/1.1494855
105.
105. N. Lobontiu, J. S. N. Paine, E. O’Malley, and M. Samuelson, Precis. Eng. 26, 183 (2002).
http://dx.doi.org/10.1016/S0141-6359(01)00108-8
106.
106. M. Jouaneh and P. Ge, Mechatronics 7, 465 (1997).
http://dx.doi.org/10.1016/S0957-4158(97)00016-0
107.
107. M. Jouaneh and R. Yang, Precis. Eng. 27, 407 (2003).
http://dx.doi.org/10.1016/S0141-6359(03)00045-X
108.
108. G. Schitter, Tech. Mess. 76, 266 (2009).
http://dx.doi.org/10.1524/teme.2009.0967
109.
109. R. R. J. Craig, Mechanics of Materials, 2nd ed. (Wiley, New York, 2000), p. 752.
110.
110. N. Lobontiu and E. Garcia, Comput. Struct. 81, 1329 (2003).
http://dx.doi.org/10.1016/S0045-7949(03)00056-7
111.
111. W. C. Young and R. G. Budynas, Roark's Formulas for Stress and Strain, 7th ed. (McGraw-Hill, New York, 2002), p. 851.
112.
112. S. R. Park and S. H. Yang, J. Mater. Process. Technol. 164-165, 1584 (2005).
http://dx.doi.org/10.1016/j.jmatprotec.2005.02.018
113.
113. M. L. Culpepper and G. Anderson, Precis. Eng. 28, 469 (2004).
http://dx.doi.org/10.1016/j.precisioneng.2004.02.003
114.
114. D. Kim, D. Kang, J. Shim, I. Song, and D. Gweon, Rev. Sci. Instrum. 76, 073706 (2005).
http://dx.doi.org/10.1063/1.1978827
115.
115. F. Cardarelli, Materials Handbook: A Concise Desktop Reference, 2nd ed. (Springer, 2000).
116.
116. M. Shiga, Curr. Opin. Solid State Mater. Sci. 1, 340 (1996).
http://dx.doi.org/10.1016/S1359-0286(96)80023-4
117.
117. K. H. J. Buschow and F. R. de Boer, Physics of Magnetism and Magnetic Materials (Kluwer Academic, 2004).
118.
118. J. W. Ryu and D.-G. Gweon, Precis. Eng. 21, 83 (1997).
http://dx.doi.org/10.1016/S0141-6359(97)00059-7
119.
119. K. H. Ho, S. T. Newman, S. Rahimifard, and R. D. Allen, Int. J. Mach. Tools Manuf. 44, 1247 (2004).
http://dx.doi.org/10.1016/j.ijmachtools.2004.04.017
120.
120. A. B. Puri and B. Bhattacharyya, Int. J. Mach. Tools Manuf. 43, 151 (2003).
http://dx.doi.org/10.1016/S0890-6955(02)00158-X
121.
121. T. A. Spedding and Z. Q. Wang, J. Mater. Process. Technol. 69, 18 (1997).
http://dx.doi.org/10.1016/S0924-0136(96)00033-7
122.
122. N. M. Abbas, D. G. Solomon, and M. F. Bahari, Int. J. Mach. Tools Manuf. 47, 1214 (2007).
http://dx.doi.org/10.1016/j.ijmachtools.2006.08.026
123.
123. G. T. Smith, Cutting Tool Technology: Industrial Handbook (Springer-Verlag London, 2008).
124.
124. E. Shamoto and T. Moriwaki, CIRP Ann. 48, 441 (1999).
http://dx.doi.org/10.1016/S0007-8506(07)63222-3
125.
125. N. B. Dahotre and S. P. Harimkar, Laser Fabrication and Machining of Materials (Springer, 2008).
126.
126. D. J. Leo, Engineering Analysis of Smart Material Systems (Wiley, 2007).
127.
127. H. C. Liaw and B. Shirinzadeh, IEEE/ASME Trans. Mechatron. 14, 517 (2009).
http://dx.doi.org/10.1109/TMECH.2009.2005491
128.
128. P. Gao, S. Swei, and Z. Yuan, Nanotechnology 10, 394 (1999).
http://dx.doi.org/10.1088/0957-4484/10/4/306
129.
129. D. C. Handley, T.-F. Lu, and Y. K. Yong, in Proceedings of the Eighth International Conference on Control, Automation, Robotics and Vision, ICARCV (IEEE, 2004), pp. 12791284.
130.
130. N. Lobontiu and E. Garcia, Comput. Struct. 81, 2797 (2003).
http://dx.doi.org/10.1016/j.compstruc.2003.07.003
131.
131. H.-W. Ma, Y. Shao-Ming, L.-Q. Wang, and Z. Zhong, Sens. Actuators, A 132, 730 (2006).
http://dx.doi.org/10.1016/j.sna.2005.12.028
132.
132. Piezo-Mechanics: An Introduction (APC International, Pleasant Gap, PA, 2003).
133.
133. A. J. Fleming, Rev. Sci. Instrum. 80, 104701 (2009).
http://dx.doi.org/10.1063/1.3234261
134.
134. J. Bryzek, S. Roundy, B. Bircumshaw, C. Chung, K. Castellino, J. Stetter, and M. Vestel, IEEE Circuits Devices Mag. 22, 8 (2006).
http://dx.doi.org/10.1109/MCD.2006.1615241
135.
135. E. Eleftheriou, T. Antonakopoulos, G. Binnig, G. Cherubini, M. Despont, A. Dholakia, U. Durig, M. Lantz, H. Pozidis, H. Rothuizen, and P. Vettiger, IEEE Trans. Magn. 39, 938 (2003).
http://dx.doi.org/10.1109/TMAG.2003.808953
136.
136. A. Pantazi, A. Sebastian, T. A. Antonakopoulos, P. Bachtold, A. R. Bonaccio, J. Bonan, G. Cherubini, M. Despont, R. A. DiPietro, U. Drechsler, U. DurIg, B. Gotsmann, W. Haberle, C. Hagleitner, J. L. Hedrick, D. Jubin, A. Knoll, M. A. Lantz, J. Pentarakis, H. Pozidis, R. C. Pratt, H. Rothuizen, R. Stutz, M. Varsamou, D. Weismann, and E. Eleftheriou, IBM J. Res. Dev. 52, 493 (2008).
http://dx.doi.org/10.1147/rd.524.0493
137.
137. M. A. Lantz, H. E. Rothuizen, U. Drechsler, W. HŁberle, and M. Despont, J. Microelectromech. Syst. 16, 130 (2007).
http://dx.doi.org/10.1109/JMEMS.2006.886032
138.
138. J. Choi, H. Park, K. Kim, and J. Jeon, “Smart structures and materials 2001: Smart electronics and MEMS,” Proc. SPIE 4334, 363371 (2001).
http://dx.doi.org/10.1117/12.436622
139.
139. X. Huang, J. Lee, N. Ramakrishnan, M. Bedillion, and P. Chu, Mechatronics 20, 27 (2010).
http://dx.doi.org/10.1016/j.mechatronics.2009.06.005
140.
140. J. Heck, D. Adams, N. Belov, T. A. Chou, B. Kim, K. Kornelsen, Q. Ma, V. Rao, S. Severi, D. Spicer, G. Tchelepi, and A. Witvrouw, Microelectron. Eng. 87, 1198 (2010).
http://dx.doi.org/10.1016/j.mee.2009.12.014
141.
141. S. D. Senturia, Microsystem Design (Springer, 2001).
142.
142. L. Carley, G. Ganger, D. Guillou, and D. Nagle, IEEE Trans. Magn. 37, 657 (2001).
http://dx.doi.org/10.1109/20.917597
143.
143. J. F. Alfaro and G. K. Fedder, in Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems - MSM 2002 (NSTI, 2002), pp. 202205.
144.
144. C.-H. Kim, H.-M. Jeong, J.-U. Jeon, and Y.-K. Kim, J. Microelectromech. Syst. 12, 470 (2003).
http://dx.doi.org/10.1109/JMEMS.2003.809960
145.
145. J. B. C. Engelen, M. A. Lantz, H. E. Rothuizen, L. Abelmann, and M. C. Elwenspoek, in Proceedings of the 15th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCER 2009 (IEEE, 2009), pp. 17621765.
146.
146. J. B. C. Engelen, H. E. Rothuizen, U. Drechsler, R. Stutz, M. Despont, L. Abelmann, and M. A. Lantz, Microelectron. Eng. 86, 1230 (2009).
http://dx.doi.org/10.1016/j.mee.2008.11.032
147.
147. V. Kaajakari, Practical MEMS (Small Gear, Las Vegas, NV, 2009).
148.
148. Y. Zhu, A. Bazaei, S. O. R. Moheimani, and M. Yuce, IEEE Electron Device Lett. 31, 1161 (2010).
http://dx.doi.org/10.1109/LED.2010.2058841
149.
149. Y. Zhu, A. Bazaei, S. O. R. Moheimani, and M. Yuce, IEEE/ASME J. Microelectromech. Syst. 20, 711 (2011).
http://dx.doi.org/10.1109/JMEMS.2011.2140358
150.
150. L. L. Chu and Y. B. Gianchandani, J. Micromech. Microeng. 13, 279 (2003).
http://dx.doi.org/10.1088/0960-1317/13/2/316
151.
151. Y. Zhu, S. O. R. Moheimani, and M. Yuce, IEEE Sens. J. 12, 2508 (2012).
http://dx.doi.org/10.1109/JSEN.2012.2194141
152.
152. J. Lee, X. Huang, and P. B. Chu, J. Microelectromech. Syst. 18, 660 (2009).
http://dx.doi.org/10.1109/JMEMS.2009.2016275
153.
153. J. Dong and P. M. Ferreira, J. Micromech. Microeng. 18, 035011 (2008).
http://dx.doi.org/10.1088/0960-1317/18/3/035011
154.
154. C. K. Pang, Y. Lu, C. Li, J. Chen, H. Zhu, J. Yang, J. Mou, G. Guo, B. M. Chen, and T. H. Lee, Mechatronics 19, 1158 (2009).
http://dx.doi.org/10.1016/j.mechatronics.2009.03.005
155.
155. M. A. Lantz, G. K. Binnig, M. Despont, and U. Drechsler, Nanotechnology 16, 1089 (2005).
http://dx.doi.org/10.1088/0957-4484/16/8/016
156.
156. H. R. Pota, S. O. R. Moheimani, and M. Smith, Smart Mater. Struct. 11, 1 (2002).
http://dx.doi.org/10.1088/0964-1726/11/1/301
157.
157. S. O. R. Moheimani and B. J. G. Vautier, IEEE Trans. Control Syst. Technol. 13, 1021 (2005).
http://dx.doi.org/10.1109/TCST.2005.857407
158.
158. Y. Zhu, S. O. R. Moheimani, and M. Yuce, IEEE Electron Device Lett. 32, 1146 (2010).
http://dx.doi.org/10.1109/LED.2011.2155027
159.
159. A. Bazaei, Y. Zhu, S. O. R. Moheimani, and M. Yuce, IEEE Sens. J. 12, 1772 (2012).
http://dx.doi.org/10.1109/JSEN.2011.2178236
160.
160. J. Yao, S. Arney, and N. MacDonald, J. Microelectromech. Syst. 1, 14 (1992).
http://dx.doi.org/10.1109/84.128051
161.
161. H.-H. Liao, H.-H. Shen, B.-T. Liao, Y.-J. Yang, Y.-C. Chen, and W.-W. Pai, in Proceedings of the 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 2010 (IEEE, 2010), pp. 549552.
162.
162. P.-F. Indermuehle, C. Linder, J. Brugger, V. Jaecklin, and N. de Rooij, Sens. Actuators A 43, 346 (1994).
http://dx.doi.org/10.1016/0924-4247(93)00704-8
163.
163. S. O. R. Moheimani, A. C. Hammond, A. N. Laskovski, and A. G. Fowler, in Proceedings of the International Conference On Nanoscience and Nanotechnology, Perth, Australia, 2012.
164.
164. A. G. Fowler, A. N. Laskovski, A. C. Hammond, and S. O. R. Moheimani, IEEE/ASME J. Microelectromech. Syst. 21, 771 (2012).
http://dx.doi.org/10.1109/JMEMS.2012.2191940
165.
165. T. R. Hicks and P. D. Atherton, The Nanopositioning Book (Queensgate Instruments, Torquay, Torbay, UK, 1997).
166.
166. T. Ando, N. Kodera, D. Maruyama, E. Takai, K. Saito, and A. Toda, Jpn. J Appl. Phys., Part 1 41, 4851 (2002).
http://dx.doi.org/10.1143/JJAP.41.4851
167.
167. R. C. Barrett and C. F. Quate, Rev. Sci. Instrum. 62, 1393 (1991).
http://dx.doi.org/10.1063/1.1142506
168.
168. J. A. Main and E. Garcia, J. Guid. Control Dyn. 20, 479 (1997).
http://dx.doi.org/10.2514/2.4066
169.
169. R. S. Robinson, J. Comput.-Assist. Microsc. 2, 53 (1996).
170.
170. O. M. E. Rifai and K. Youcef-Toumi, in Proceedings of the American Control Conference (IEEE, Anchorage, AK, 2002), pp. 37773782.
171.
171. K. K. Leang and S. Devasia, Mechatronics 16, 141 (2006).
http://dx.doi.org/10.1016/j.mechatronics.2005.11.006
172.
172. J. Maess, A. J. Fleming, and F. Allgower, Rev. Sci. Instrum. 79, 015105 (2008).
http://dx.doi.org/10.1063/1.2826428
173.
173. H.-J. Lee and D. A. Saravanos, Intell. Mater. Syst. Struct. 9, 503 (1998).
http://dx.doi.org/10.1177/1045389X9800900702
174.
174. Y. Okazaki, Precis. Eng. 12, 151 (1990).
http://dx.doi.org/10.1016/0141-6359(90)90087-F
175.
175. R. J. E. Merry, N. C. T. de Kleijn, M. J. G. van de Molengraft, and M. Steinbuch, IEEE/ASME Trans. Mechatron. 14, 21 (2009).
http://dx.doi.org/10.1109/TMECH.2008.2006756
176.
176. S. Korson and A. J. Helmicki, in Proceedings of the IEEE Conference on Control Applications (IEEE, Albany, NY, 1995), pp. 11541159.
177.
177. F. Braet, R. D. Zanger, S. Kammer, and E. Wisse, Int. J. Imaging Syst. Technol. 8, 162 (1997).
http://dx.doi.org/10.1002/(SICI)1098-1098(1997)8:2<162::AID-IMA3>3.0.CO;2-8
178.
178. A. J. Fleming, IEEE/ASME Trans. Mechatron. 15, 433 (2010).
http://dx.doi.org/10.1109/TMECH.2009.2028422
179.
179. D. Y. Abramovitch, S. Hoen, and R. Workman, in Proceedings of the American Control Conference (IEEE, Seattle, WA, 2008), pp. 26842689.
180.
180. A. Sebastian and S. M. Salapaka, IEEE Trans. Control Syst. Technol. 13, 868 (2005).
http://dx.doi.org/10.1109/TCST.2005.854336
181.
181. A. Stemmer, G. Schitter, J. M. Rieber, and F. Allgöwer, Eur. J. Control 11, 384 (2005).
http://dx.doi.org/10.3166/ejc.11.384-395
182.
182. A. Daniele, S. Salapaka, M. V. Salapaka, and M. Dahleh, in Proceedings of the American Control Conference (IEEE, San Diego, CA, 1999), pp. 253257.
183.
183. B. Bhikkaji, M. Ratnam, A. J. Fleming, and S. O. R. Moheimani, IEEE Trans. Control Syst. Technol. 15, 853 (2007).
http://dx.doi.org/10.1109/TCST.2007.902947
184.
184. B. Bhikkaji, M. Ratnam, and S. O. R. Moheimani, Sens. Actuators A 135, 700 (2007).
http://dx.doi.org/10.1016/j.sna.2006.07.032
185.
185. I. A. Mahmood and S. O. R. Moheimani, Rev. Sci. Instrum. 80, 063705 (2009).
http://dx.doi.org/10.1063/1.3155790
186.
186. S. S. Aphale, A. J. Fleming, and S. O. R. Moheimani, Smart Mater. Struct. 16, 439 (2007).
http://dx.doi.org/10.1088/0964-1726/16/2/023
187.
187. N. Kodera, H. Yamashita, and T. Ando, Rev. Sci. Instrum. 76, 05378 (2005).
http://dx.doi.org/10.1063/1.1903123
188.
188. A. J. Fleming and S. O. R. Moheimani, IEEE Trans. Control Syst. Technol. 14, 33 (2006).
http://dx.doi.org/10.1109/TCST.2005.860511
189.
189. R. J. E. Merry, R. van de Molengraft, and M. Steinbuch, Sens. Actuators A 162, 51 (2010).
http://dx.doi.org/10.1016/j.sna.2010.05.033
190.
190. X. Tan and J. S. Baras, IEEE Trans. Autom. Control 50, 827 (2005).
http://dx.doi.org/10.1109/TAC.2005.849215
191.
191. D. Croft and S. Devasia, Rev. Sci. Instrum. 70, 4600 (1999).
http://dx.doi.org/10.1063/1.1150119
192.
192. Y. Zhao and S. Jayasuriya, ASME J. Dyn. Syst., Meas., Control 117, 490 (1995).
http://dx.doi.org/10.1115/1.2801105
193.
193. G. Schitter, A. Stemmer, and F. Allgöwer, in Proceedings of the American Control Conference (IEEE, Denver, CO, 2003), pp. 37203725.
194.
194. Y. Li and J. Bechhoefer, Rev. Sci. Instrum. 78, 013702 (2007).
http://dx.doi.org/10.1063/1.2403839
195.
195. Y. Wu and Q. Zou, IEEE Trans. Control Syst. Technol. 17, 1069 (2009).
http://dx.doi.org/10.1109/TCST.2008.2005111
196.
196. E. Bayo, J. Robotic Syst. 4, 63 (1987).
http://dx.doi.org/10.1002/rob.4620040106
197.
197. D. Croft, D. McAllister, and S. Devasia, ASME J. Manuf. Sci. Eng. 120, 617 (1998).
http://dx.doi.org/10.1115/1.2830166
198.
198. D. Croft, S. Stilson, and S. Devasia, Nanotechnology 10, 201 (1999).
http://dx.doi.org/10.1088/0957-4484/10/2/316
199.
199. A. J. Fleming and A. G. Wills, IEEE Trans. Control Syst. Technol. 13, 552 (2009).
http://dx.doi.org/10.1109/TCST.2008.2001375
200.
200. Y. Wu and Q. Zou, IEEE Trans. Control Syst. Technol. 15, 936 (2007).
http://dx.doi.org/10.1109/TCST.2007.899722
201.
201. D. A. Bristow, J. Dong, A. G. Alleyne, P. Ferriera, and S. Salapaka, Rev. Sci. Instrum. 79, 103704 (2008).
http://dx.doi.org/10.1063/1.2980377
202.
202. J. Ghosh and B. Paden, IEEE Trans. Autom. Control 47, 831 (2002).
http://dx.doi.org/10.1109/TAC.2002.1000282
203.
203. Y. Li and J. Bechhoefer, in Proceedings of the American Control Conference (IEEE, Seattle, WA, 2008), pp. 27032709.
204.
204. G. M. Clayton and S. Devasia, Nanotechnology 16, 809 (2005).
http://dx.doi.org/10.1088/0957-4484/16/6/032
205.
205. K. S. Kim and Q. Zou, in Proceedings of the American Control Conference (IEEE, Seattle, WA, 2008), pp. 27102715.
206.
206. U. Aridogan, Y. Shan, and K. K. Leang, ASME J. Dyn. Syst., Meas., Control 131, 061103 (2009).
http://dx.doi.org/10.1115/1.4000068
207.
207. R. J. E. Merry, M. J. C. Ronde, R. van de Molengraft, K. R. Koops, and M. Steinbuch, IEEE Trans. Control Syst. Technol. 19, 1622 (2012).
http://dx.doi.org/10.1109/TCST.2010.2091642
208.
208. K. K. Chew and M. Tomizuka, IEEE Control Syst. Mag. 10, 16 (1990).
http://dx.doi.org/10.1109/37.50664
209.
209. M. Steinbuch, S. Weiland, and T. Singh, Automatica 43, 2086 (2007).
http://dx.doi.org/10.1016/j.automatica.2007.04.011
210.
210. Y. Shan and K. K. Leang, Mechatronics 22, 271 (2012).
http://dx.doi.org/10.1016/j.mechatronics.2011.11.007
211.
211. Y. Shan and K. K. Leang, Automatica 48, 1751 (2012).
http://dx.doi.org/10.1016/j.automatica.2012.05.055
212.
212. A. Pantazi, A. Sebastian, H. Pozidis, and E. Eleftheriou, in Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference (IEEE, Seville, Spain, 2005), pp. 11741179.
213.
213. J. Dong, S. M. Salapaka, and P. M. Ferreira, in Proceedings of the IEEE Conference on Decision and Control (IEEE, New Orleans, LA, 2007), pp. 44954500.
214.
214. Y. Wu, J. Shi, C. Su, and Q. Zou, Rev. Sci. Instrum. 80, 043709 (2009).
http://dx.doi.org/10.1063/1.3124183
215.
215. S. Bashash and N. Jalili, IEEE/ASME Trans. Mechatron. 14, 11 (2009).
http://dx.doi.org/10.1109/TMECH.2008.2006501
216.
216. The Science of Hysteresis, edited by G. Bertotti and I. Mayergoyz (Elsevier, New York, 2006), Vol. 1.
217.
217. The Science of Hysteresis, edited by G. Bertotti and I. Mayergoyz (Elsevier, New York, 2006), Vol. 2.
218.
218. The Science of Hysteresis, edited by G. Bertotti and I. Mayergoyz (Elsevier, New York, 2006), Vol. 3.
219.
219. Physik Instrumente, “Piezo nano positionoing: Inspirations 2009,” (Physik Instrumente, 2009).
220.
220. G. S. Choi, Y. A. Lim, and G. H. Choi, Mechatronics 12, 669 (2002).
http://dx.doi.org/10.1016/S0957-4158(01)00020-4
221.
221. M. Brokate and J. Sprekels, Hysteresis and Phase Transitions (Springer, New York, 1996).
222.
222. K. Kuhnen, Eur. J. Control 9, 407 (2003).
http://dx.doi.org/10.3166/ejc.9.407-418
223.
223. M. A. Janaideh, C.-Y. Su, and S. Rakheja, Smart Mater. Struct. 17, 035026 (2008).
http://dx.doi.org/10.1088/0964-1726/17/3/035026
224.
224. P. Ge and M. Jouaneh, IEEE Trans. Control Syst. Technol. 4, 209 (1996).
http://dx.doi.org/10.1109/87.491195
225.
225. P. Ge and M. Jouaneh, Precis. Eng. 20, 99 (1997).
http://dx.doi.org/10.1016/S0141-6359(97)00014-7
226.
226. Y. Yu, Z. Xiao, N. G. Naganathan, and R. V. Dukkipati, Mech. Mach. Theory 37, 75 (2002).
http://dx.doi.org/10.1016/S0094-114X(01)00060-X
227.
227. H.-S. Ahn, in Proceedings of the Fourth International Conference on Control and Automation (IEEE, Montreal, Canada, 2003), pp. 128132.
228.
228. J. D. Kim and S. R. Nam, J. Mater. Process. Technol. 61, 309 (1999).
http://dx.doi.org/10.1016/0924-0136(95)02188-4
229.
229. J. Song and D. K. Armen, J. Eng. Mech. 132, 610 (2006).
http://dx.doi.org/10.1061/(ASCE)0733-9399(2006)132:6(610)
230.
230. H. J. M. T. A. Adriaens, W. L. d. Koning, and R. Banning, IEEE/ASME Trans. Mechatron. 5, 331 (2000).
http://dx.doi.org/10.1109/3516.891044
231.
231. R. Banning, W. L. de Koning, H. J. M. T. A. Adriaens, and R. K. Koops, Automatica 37, 1883 (2001).
http://dx.doi.org/10.1016/S0005-1098(01)00157-1
232.
232. G. Michael and C. Nikola, IEEE Control Syst. Mag. 17, 69 (1997).
http://dx.doi.org/10.1109/37.588158
233.
233. R. H. Comstock, “Charge control of piezoelectric actuators to reduce hysteresis effects,” US Patent No. 4,263,527 (1979).
234.
234. H. Kaizuka and B. Siu, Jpn. J. Appl. Phys. 27, 773 (1988).
http://dx.doi.org/10.1143/JJAP.27.L773
235.
235. J. A. Main, E. Garcia, and D. V. Netwon, J. Guid. Control Dyn. 18, 1068 (1995).
http://dx.doi.org/10.2514/3.21506
236.
236. K. Furutani, M. Urushibata, and N. Mohri, Nanotechnology 9, 93 (1998).
http://dx.doi.org/10.1088/0957-4484/9/2/009
237.
237. A. J. Fleming and S. O. R. Moheimani, Electron. Lett. 39, 282 (2003).
http://dx.doi.org/10.1049/el:20030235
238.
238. A. J. Fleming and S. O. R. Moheimani, Rev. Sci. Instrum. 76, 073707 (2005).
http://dx.doi.org/10.1063/1.1938952
239.
239. A. J. Fleming and K. K. Leang, Ultramicroscopy 108, 1551 (2008).
http://dx.doi.org/10.1016/j.ultramic.2008.05.004
240.
240. G. M. Clayton, T. Tien, A. J. Fleming, S. R. Moheimani, and S. Devasia, Mechatronics 18, 273 (2008).
http://dx.doi.org/10.1016/j.mechatronics.2007.07.006
241.
241. S. M. Hues, C. F. Draper, K. P. Lee, and R. J. Colton, Rev. Sci. Instrum. 65, 1561 (1994).
http://dx.doi.org/10.1063/1.1144892
242.
242. K. R. Koops, P. M. L. O. Scholte, and W. L. d. Koning, Appl. Phys. A 68, 691 (1999).
http://dx.doi.org/10.1007/s003390050962
243.
243. H. Jung and D.-G. Gweon, Rev. Sci. Instrum. 71, 1896 (2000).
http://dx.doi.org/10.1063/1.1150559
244.
244. H. Janocha and K. Kuhnen, Sens. Actuators, A 79, 83 (2000).
http://dx.doi.org/10.1016/S0924-4247(99)00215-0
245.
245. B. Mokaberi and A. A. G. Requicha, IEEE Trans. Autom. Sci. Eng. 3, 199 (2004).
http://dx.doi.org/10.1109/TASE.2006.875534
246.
246. Q. Yang, S. Jaqannathan, and E. W. Bohannan, Int. J. Nanotechnol. 3, 527 (2006).
http://dx.doi.org/10.1504/IJNT.2006.011177
247.
247. V. Y. Yurov and A. N. Klimov, Rev. Sci. Instrum. 65, 1551 (1994).
http://dx.doi.org/10.1063/1.1144890
248.
248. R. Staub, D. Alliata, and C. Nicolini, Rev. Sci. Instrum. 66, 2513 (1995).
http://dx.doi.org/10.1063/1.1145650
249.
249. J. T. Woodward and D. K. Schwartz, J. Vac. Sci. Technol. B 16, 51 (1998).
http://dx.doi.org/10.1116/1.589834
250.
250. S. H. Huerth and H. D. Hallen, J. Vac. Sci. Technol. B 21, 714 (2000).
http://dx.doi.org/10.1116/1.1553972
251.
251. Y. Yan, Y. Wu, Q. Zou, and C. Su, Rev. Sci. Instrum. 79, 073704 (2008).
http://dx.doi.org/10.1063/1.2956980
252.
252. G. M. Clayton and K. K. Leang, in Proceedings of the IEEE Control and Decisions Conference, Maui, Hawaii, 10–13 December, 2012.
253.
253. G. Schitter and N. Phan, in Proceedings of the American Control Conference, Seattle, WA (IEEE, 2008), pp. 26902695.
254.
254. Y. K. Yong, B. Bhikkaji, and S. O. R. Moheimani, in Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE/ASME, Budapest, Hungary, 2011).
255.
255. D. Saya, K. Fukushima, H. Toshiyoshi, G. Hashiguchi, H. Fujita, and H. Kawakatsu, Sens. Actuators, A 95, 281 (2002).
http://dx.doi.org/10.1016/S0924-4247(01)00742-7
256.
256. M. W. Fairbairn, S. O. R. Moheimani, and A. J. Fleming, IEEE/ASME J. Microelectromech. Syst. 20, 1372 (2011).
http://dx.doi.org/10.1109/JMEMS.2011.2168809
257.
257. A. Choudhury, P. J. Hesketh, T. Thundat, and Z. Hu, J. Micromech. Microeng. 17, 2065 (2007).
http://dx.doi.org/10.1088/0960-1317/17/10/019
258.
258. H. Koyama, F. Oohira, M. Hosogi, G. Hashiguchi, and T. Hamada, IEEE J. Sel. Top. Quantum Electron 13, 415 (2007).
http://dx.doi.org/10.1109/JSTQE.2007.892067
259.
259. R. Arsenault, Mater. Sci. Eng. 64, 171 (1984).
http://dx.doi.org/10.1016/0025-5416(84)90101-0
260.
260. B. J. Kenton and K. K. Leang, in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, St. Paul, Minneapolis, 2012), pp. 47684773.
http://dx.doi.org/10.1109/ICRA.2012.6224995
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/12/10.1063/1.4765048
Loading
/content/aip/journal/rsi/83/12/10.1063/1.4765048
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/83/12/10.1063/1.4765048
2012-12-10
2014-08-22

Abstract

Recent interest in high-speed scanning probe microscopy for high-throughput applications including video-rate atomic force microscopy and probe-based nanofabrication has sparked attention on the development of high-bandwidth flexure-guided nanopositioning systems (nanopositioners). Such nanopositioners are designed to move samples with sub-nanometer resolution with positioning bandwidth in the kilohertz range. State-of-the-art designs incorporate uniquely designed flexure mechanisms driven by compact and stiff piezoelectric actuators. This paper surveys key advances in mechanical design and control of dynamic effects and nonlinearities, in the context of high-speed nanopositioning. Future challenges and research topics are also discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/83/12/1.4765048.html;jsessionid=4lpd1luf1qe1a.x-aip-live-02?itemId=/content/aip/journal/rsi/83/12/10.1063/1.4765048&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Invited Review Article: High-speed flexure-guided nanopositioning: Mechanical design and control issues
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/12/10.1063/1.4765048
10.1063/1.4765048
SEARCH_EXPAND_ITEM