1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/83/12/10.1063/1.4770124
1.
1. V. I. Fistul, Heavily Doped Semiconductors (Plenum, New York, 1969).
2.
2. L. J. van der Pauw, Philips Res. Rep. 13, 1 (1958).
3.
3. C. Wood, A. Lockwood, A. Chmielewski, J. Parker, and A. Zoltan, Rev. Sci. Instrum. 55, 110 (1984).
http://dx.doi.org/10.1063/1.1137581
4.
4. J. A. McCormac and J.-P. Fleurial, in Modern Perspectives on Thermoelectrics and Related Materials Symposium (Materials Research Society, Anaheim, CA, 1991), p. 135.
5.
5. M. Morvic, in Proceedings of the Modern Perspectives on Thermoelectrics and Related Materials Symposium, Smolenice Castle, Slovakia, 2000 (IEEE, 2000), p. 327.
http://dx.doi.org/10.1109/asdam.2000.889512
6.
6. T. M. Dauphinee and E. Mooser, Rev. Sci. Instrum. 26, 660 (1955).
http://dx.doi.org/10.1063/1.1715281
7.
7. C. M. Hurd, J. Sci. Instrum. 42, 465 (1965).
http://dx.doi.org/10.1088/0950-7671/42/7/304
8.
8. D. M. Rowe and R. W. Bunce, J. Phys. E 4, 902 (1971).
http://dx.doi.org/10.1088/0022-3735/4/11/027
9.
9. G. L. Guthrie, Rev. Sci. Instrum. 36, 1177 (1965).
http://dx.doi.org/10.1063/1.1719833
10.
10. J. M. Lavine, Rev. Sci. Instrum. 29, 970 (1958).
http://dx.doi.org/10.1063/1.1716070
11.
11. E. E. Olson and J. E. Wertz, Rev. Sci. Instrum. 41, 419 (1970).
http://dx.doi.org/10.1063/1.1684532
12.
12. E. M. Pell and R. L. Sproull, Rev. Sci. Instrum. 23, 548 (1952).
http://dx.doi.org/10.1063/1.1746081
13.
13. T. Kaneda, S. Kobayash, and K. Shimoda, Jpn. J. Appl. Phys. 12, 1335 (1973).
http://dx.doi.org/10.1143/jjap.12.1335
14.
14. N. Z. Lupu, N. M. Tallan, and D. S. Tannhaus, Rev. Sci. Instrum. 38, 1658 (1967).
http://dx.doi.org/10.1063/1.1720631
15.
15. B. R. Russell and C. Wahlig, Rev. Sci. Instrum. 21, 1028 (1950).
http://dx.doi.org/10.1063/1.1745493
16.
16. L. J. van der Pauw, Philips Tech. Rev. 20, 220 (1958).
17.
17. C. Kasl and M. J. R. Hoch, Rev. Sci. Instrum. 76, 033907 (2005).
http://dx.doi.org/10.1063/1.1866232
18.
18. D. W. Koon and C. J. Knickerbocker, Rev. Sci. Instrum. 63, 207 (1992).
http://dx.doi.org/10.1063/1.1142958
19.
19. E. H. Putley, The Hall Effect and Related Phenomena (Butterworths, London, 1960).
20.
20. C. J. Vineis, T. C. Harman, S. D. Calawa, M. P. Walsh, R. E. Reeder, R. Singh, and A. Shakouri, Phys. Rev. B 77, 235202 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235202
21.
21. D. W. Koon and C. J. Knickerbocker, Rev. Sci. Instrum. 64, 510 (1993).
http://dx.doi.org/10.1063/1.1144224
22.
22. G. J. Snyder and E. S. Toberer, Nature Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
23.
23. H. Wang, Y. Pei, A. D. LaLonde, and G. J. Snyder, Proc. Natl. Acad. Sci. U.S.A. 109, 9705 (2012).
http://dx.doi.org/10.1073/pnas.1111419109
24.
24. A. Zevalkink, W. Zeier, G. Pomrehn, E. Schechtel, W. Tremel, and G. J. Snyder, Energy Environ. Sci. 5, 9121 (2012).
http://dx.doi.org/10.1039/C2EE22378C
25.
25. L. P. Hu, X. H. Liu, H. H. Xie, J. J. Shen, T. J. Zhu, and X. B. Zhao, Acta Mater. 60, 4431 (2012).
http://dx.doi.org/10.1016/j.actamat.2012.05.008
26.
26. C. B. Vining, A. Zoltan, and J. W. Vandersande, Int. J. Thermophys. 10, 259 (1989).
http://dx.doi.org/10.1007/bf00500724
27.
27. C. Wood, D. Zoltan, and G. Stapfer, Rev. Sci. Instrum. 56, 719 (1985).
http://dx.doi.org/10.1063/1.1138213
28.
28. S. Iwanaga, E. S. Toberer, A. LaLonde, and G. J. Snyder, Rev. Sci. Instrum. 82, 063905 (2011).
http://dx.doi.org/10.1063/1.3601358
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/12/10.1063/1.4770124
Loading
/content/aip/journal/rsi/83/12/10.1063/1.4770124
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/83/12/10.1063/1.4770124
2012-12-14
2015-03-05

Abstract

The implementation of the van der Pauw (VDP) technique for combined high temperature measurement of the electrical resistivity and Hall coefficient is described. The VDP method is convenient for use since it accepts sample geometries compatible with other measurements. The technique is simple to use and can be used with samples showing a broad range of shapes and physical properties, from near insulators to metals. Three instruments utilizing the VDP method for measurement of heavily doped semiconductors, such as thermoelectrics, are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/83/12/1.4770124.html;jsessionid=a9rg6q965n2ol.x-aip-live-03?itemId=/content/aip/journal/rsi/83/12/10.1063/1.4770124&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Measurement of the electrical resistivity and Hall coefficient at high temperatures
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/12/10.1063/1.4770124
10.1063/1.4770124
SEARCH_EXPAND_ITEM