1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Active diffraction gratings: Development and tests
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/83/12/10.1063/1.4770333
1.
1. R. K. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC/Taylor and Francis, 2011).
2.
2. E. Steinhaus and S. G. Lipson, J. Opt. Soc. Am. 69, 478 (1979).
http://dx.doi.org/10.1364/JOSA.69.000478
3.
3. S. Bonora, I. Capraro, L. Poletto, M. Romanin, C. Trestino, and P. Villoresi, Rev. Sci. Instrum. 77, 093102 (2006).
http://dx.doi.org/10.1063/1.2337096
4.
4. S. Bonora, D. Coburn, U. Bortolozzo, C. Dainty, and S. Residori, Opt. Express 20, 5178 (2012).
http://dx.doi.org/10.1364/OE.20.005178
5.
5. E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, Opt. Express 14, 8900 (2006).
http://dx.doi.org/10.1364/OE.14.008900
6.
6. J. W. Hardy, Adaptive Optics for Astronomical Telescopes, Oxford Series in Optical and Imaging Sciences (Oxford University Press, 1998).
7.
7. F. Bortoletto, C. Bonoli, P. Panizzolo, C. D. Ciubotaru, and F. Mammano, PLoS ONE 6, e22321 (2011).
http://dx.doi.org/10.1371/journal.pone.0022321
8.
8. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, Opt. Express 10, 405 (2002).
http://dx.doi.org/10.1364/OE.10.000405
9.
9. P. Villoresi, S. Bonora, M. Pascolini, L. Poletto, G. Tondello, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, and S. De Silvestri, Opt. Lett. 29, 207 (2004).
http://dx.doi.org/10.1364/OL.29.000207
10.
10. S. Bonora, F. Frassetto, S. Coraggia, C. Spezzani, M. Coreno, M. Negro, M. Devetta, C. Vozzi, S. Stagira, and L. Poletto, Appl. Phys. B 106, 905 (2011).
http://dx.doi.org/10.1007/s00340-011-4820-9
11.
11. D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, J. Opt. 12, 013001 (2010).
http://dx.doi.org/10.1088/2040-8978/12/1/013001
12.
12. L. Poletto and F. Frassetto, Appl. Opt. 49, 5465 (2010).
http://dx.doi.org/10.1364/AO.49.005465
13.
13. C. W. Wong, Y. Jeon, G. Barbastathis, and S. Kim, “Analog tunable gratings driven by thin-film piezoelectric microelectromechanical actuators,” Appl. Opt. 42, 621626 (2003).
http://dx.doi.org/10.1364/AO.42.000621
14.
14. O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, “Deformable grating optical modulator,” Opt. Lett. 17, 688690 (1992).
http://dx.doi.org/10.1364/OL.17.000688
15.
15. R. A. Guerrero, M. W. C. Sze, and J. R. A. Batiller, “Deformable curvature and beam scanning with an elastomeric concave grating actuated by a shape memory alloy,” Appl. Opt. 49, 19 (2010).
http://dx.doi.org/10.1364/AO.49.003634
16.
16. H. S. Fung, C. T. Chen, L. J. Huang, C. H. Chang, S. C. Chung et al., “A novel active grating monochromator—Active grating spectrometer beamline system for inelastic softxray scattering experiments,” AIP Conf. Proc. 705, 655 (2004).
http://dx.doi.org/10.1063/1.1757881
17.
17. T. C. Tseng, S. Y. Perng, H. S. Fung, S. W. Lin, J. C. Syu, K. H. Hsu, and C. T. Chen, “Prototype testing of a composite type active grating bender with Si substrate for surface profile high order term elimination,” Diamond Light Source Proc. 1, e61 (2011).
18.
18. G. Brusatin and G. Della Giustina, J. Sol-Gel Sci. Technol. 60, 299 (2011).
http://dx.doi.org/10.1007/s10971-011-2562-0
19.
19. M. Guglielmi, G. Brusatin, and G. Della Giustina, J. Non-Cryst. Sol. 353, 1681 (2007).
http://dx.doi.org/10.1016/j.jnoncrysol.2007.02.041
20.
20. S. Dal Zilio, G. Della Giustina, G. Brusatin, and M. Tormen, Microelectron. Eng. 87, 1143 (2010).
http://dx.doi.org/10.1016/j.mee.2009.10.045
21.
21. F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J. J. Jasieniak, G. Della Giustina, G. Brusatin, S. Toffanin, and R. Signorini, Adv. Funct. Mater. 22, 337 (2012).
http://dx.doi.org/10.1002/adfm.201101684
22.
22. G. Della Giustina, G. Zacco, E. Zanchetta, M. Gugliemi, F. Romanato, and G. Brusatin, Microelectron. Eng. 88, 1923 (2011).
http://dx.doi.org/10.1016/j.mee.2011.01.013
23.
23. X. Le Guevel, C. Palazzesi, P. Proposito, G. Della Giustina, and G. Brusatin, J. Mater. Chem. 18, 3556 (2008).
http://dx.doi.org/10.1039/b802257g
24.
24. G. Brusatin, G. Della Giustina, F. Romanato, and M. Guglielmi, Nanotechnology 19, 175306 (2008).
http://dx.doi.org/10.1088/0957-4484/19/17/175306
25.
25. S. Gardin, R. Signorini, A. Pistore, G. Della Giustina, G. Brusatin, M. Guglielmi, and R. Bozio, J. Phys. Chem. C 114, 7646 (2010).
http://dx.doi.org/10.1021/jp911495h
26.
26. E. Zanchetta, V. Auzelyte, J. Brugger, A. V. Savegnago, G. Della Giustina, and G. Brusatin, Microelectron. Eng. 98, 176 (2012).
http://dx.doi.org/10.1016/j.mee.2012.07.043
27.
27. E. B. Kley, Microelectron. Eng. 34, 3 (1997).
http://dx.doi.org/10.1016/S0167-9317(97)00186-X
28.
28. J. Ma, Y. Liu, T. Be, B. Li, and J. Chu, Appl. Opt. 50, 5647 (2011).
http://dx.doi.org/10.1364/AO.50.005647
29.
29. Y. Hishinuma and E. H. Yang, J. Micromech. Sys. 15, 370 (2006).
http://dx.doi.org/10.1109/JMEMS.2006.872229
30.
30. T. Namioka, “Theory of concave grating,” J. Opt. Soc. Am. 49, 446460 (1959).
http://dx.doi.org/10.1364/JOSA.49.000446
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/12/10.1063/1.4770333
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Adaptive grating layout, the voltage is applied to the two piezoelectric discs. (b) Grating shape change according to the applied voltage, Vc, indicates the critical voltage at which the grating surface becomes flat.

Image of FIG. 2.

Click to view

FIG. 2.

Left: grating profile sample along the direction orthogonal to the grooves; the scan length is 450 μm. Both the laminar profile and the desired grooves depth are obtained. Right: optical image of the patterned film.

Image of FIG. 3.

Click to view

FIG. 3.

Grating PTV plotted as a function of the applied voltage. The dots represent the experimental points. The linear correlation coefficient is 0.99607, confirming a proper behavior of the deformation. The inset shows the interferogram of the deformable mirror in its flat position with a deviation from flat of 0.278 μm and 0.062 μm rms.

Image of FIG. 4.

Click to view

FIG. 4.

Setup used for the optical characterization of the deformable grating. S is the source; p and q are, respectively, the entrance and exit arms; k is the total deviation angle; α and β are, respectively, the incidence and diffracted angles. The operation in the external order, that is β > α, is shown in the figure.

Image of FIG. 5.

Click to view

FIG. 5.

Variation of the grating radius to keep the monochromator on-focus in the 500–850 nm wavelength range. The parameters used for the calculations are: p = 500 mm, q = 600 mm, σ = 25 g/mm, k = 165°.

Image of FIG. 6.

Click to view

FIG. 6.

Focal spots acquired with different grating voltages: λ = 633 nm, zero order.

Image of FIG. 7.

Click to view

FIG. 7.

Focal spots acquired with different grating voltages: λ = 633 nm, m = +1 (internal order).

Image of FIG. 8.

Click to view

FIG. 8.

Focal spots acquired with different grating voltages: λ = 633 nm, m = −1 (external order).

Image of FIG. 9.

Click to view

FIG. 9.

Spectral focusing at different applied voltages; the FWHM is measured in the tangential plane. Each of the three panels presents the FWHM at a single wavelength for the internal, external, and zero diffraction order: (a) 543 nm, (b) 633 nm, and (c) 850 nm.

Tables

Generic image for table

Click to view

Table I.

Comparison between the theoretical and the measured FWHM of the grating focus.

Loading

Article metrics loading...

/content/aip/journal/rsi/83/12/10.1063/1.4770333
2012-12-19
2014-04-19

Abstract

We present the realization and characterization of an active spherical diffraction grating with variable radius of curvature to be used in grazing-incidence monochromators. The device consists of a bimorph deformable mirror on the top of which a diffraction grating with laminar profile is realized by UVlithography. The experimental results show that the active grating can optimize the beam focalization of visible wavelengths through its rotation and focus accommodation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/83/12/1.4770333.html;jsessionid=66b07queoi99i.x-aip-live-01?itemId=/content/aip/journal/rsi/83/12/10.1063/1.4770333&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Active diffraction gratings: Development and tests
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/12/10.1063/1.4770333
10.1063/1.4770333
SEARCH_EXPAND_ITEM