1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Invited Article: A materials investigation of a phase-change micro-valve for greenhouse gas collection and other potential applications
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/83/3/10.1063/1.3688856
2.
2. J. Pollmann, D. Helmig, J. Hueber, C. P. Dulmer, and P. Tans, J. Chromatogr. A 1188, 75 (2008).
http://dx.doi.org/10.1016/j.chroma.2008.02.059
3.
3.World Meterological Organization (WMO), Global Atmospheric Watch (GAW) Report No. 171; see ftp://www.wmo.ch/Documents/PublicWeb/arep/gaw/gaw171final.pdf, 2007.
4.
4. T. Machida, H. Matsueda, Y. Sawa, Y. Nakagawa, K. Hirotani, N. Kondo, K. Goto, T. Nakazawa, K. Ishikawa, and T. Ogawa, J. Atmos. Ocean. Technol. 25, 1744 (2008).
http://dx.doi.org/10.1175/2008JTECHA1082.1
5.
5. A. E. MacDonald, Bull. Am. Meterol. Soc. 86, 1747 (2005).
http://dx.doi.org/10.1175/BAMS-86-12-1747
6.
6. P. P. Tans, I. Y. Fung, and T. Takahashi, Science 247, 1431 (1990).
http://dx.doi.org/10.1126/science.247.4949.1431
7.
7. P. P. Tans, P. S. Bakwin, and D. W. Guenther, Glob. Chang. Biol. 2, 309 (1996).
http://dx.doi.org/10.1111/j.1365-2486.1996.tb00082.x
8.
8. P. S. Bakwin, P. P. Tans, B. B. Stephens, S. C. Wofsy, C. Gerbig, and A. Grainger, J. Geophys. Res. Atmos. 108(D16), 4514 (2003).
http://dx.doi.org/10.1029/2002JD003306
9.
9. A. Karion, C. Sweeney, P. Tans, and T. Newberger, J. Atmos. Ocean. Technol. 27, 1839 (2010).
http://dx.doi.org/10.1175/2010JTECHA1448.1
10.
10. K. Schulz, M. L. Jensen, B. B. Balsley, K. Davis, and J. W. Birks, Environ. Sci. Technol. 38, 3683 (2004).
http://dx.doi.org/10.1021/es035046h
12.
12. R. P. Manginell, D. A. Rosato, D. A. Benson, and G. C. Frye-Mason, Proceedings of Modeling and Simulation of Microsystems, San Juan, PR, 19–21 April (Computational Publishers, Boston, 1999), pp. 663666.
13.
13. P. R. Lewis, R. P. Manginell, D. R. Adkins, R. J. Kottenstette, D. R. Wheeler, S. S. Sokolowski, D. E. Trudell, J. E. Byrnes, M. Okandan, J. M. Bauer, R. G. Manley, and G. C. Frye-Mason, IEEE Sens. J. 6, 784 (2006).
http://dx.doi.org/10.1109/JSEN.2006.870137
14.
14. R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. A. Porter, D. Copic, V. Hietala, J. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, J. Microelectromech. Syst. 17, 1396 (2008).
http://dx.doi.org/10.1109/JMEMS.2008.2004983
15.
15. J. J. Whiting, C. S. Fix, J. M. Anderson, A. W. Staton, R. P. Manginell, D. R. Wheeler, E. B. Myers, M. L. Roukes, and R. J. Simonson, Proceedings of the 15th International Conference on Solid-State Sensors, Actuators, Microsystems, Denver, CO, 21–25 June (TRF, San Diego, 2009), pp. 16661669.
16.
16. R. P. Manginell, J. M. Bauer, M. W. Moorman, L. J. Sanchez, J. M. Anderson, J. J. Whiting, D. A. Porter, D. Copic, and K. E. Achyuthan, Sensors 11, 6517 (2011).
http://dx.doi.org/10.3390/s110706517
17.
17. A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, Renewable Sustainable Energy Rev. 13, 318 (2009).
http://dx.doi.org/10.1016/j.rser.2007.10.005
18.
18. M. Kenisarin and K. Makhamov, Renewable Sustainable Energy Rev. 11, 1913 (2007).
http://dx.doi.org/10.1016/j.rser.2006.05.005
19.
19. V. S. Persov, I. D. Mikheikin, E. V. Makhonina, and V. D. Butskii, Russ. Chem. Rev. 72, 759 (2003).
http://dx.doi.org/10.1070/RC2003v072n09ABEH000786
20.
20. S. C. Terry, J. H. Jerman, and J. B. Angell, IEEE Trans. Electron Devices 26, 1880 (1979).
http://dx.doi.org/10.1109/T-ED.1979.19791
21.
21. K. A. Shaikh, S. Li, and C. Liu, J. Microelectromech. Syst. 17, 1195 (2008).
http://dx.doi.org/10.1109/JMEMS.2008.2003055
22.
22. B. Yang and Q. Lin, Sens. Actuators, A 134, 194 (2007).
http://dx.doi.org/10.1016/j.sna.2006.07.017
23.
23. B. Yang and Q. Lin, J. Microelectromech. Syst. 18, 860 (2009).
http://dx.doi.org/10.1109/JMEMS.2009.2024806
24.
24. Z. Chen, J. Wang, S. Qian, and H. H. Bau, Lab Chip 5, 1277 (2005).
http://dx.doi.org/10.1039/b508275g
26.
26. R. L. J. M. Ubachs, P. J. G. Schreurs, and M. G. D. Geers, IEEE Trans. Compon. Packag. Technol. 27, 635 (2004).
http://dx.doi.org/10.1109/TCAPT.2004.838908
27.
27. G. Anderson and M. Scott, Clin. Chem. 37, 398 (1991).
28.
28. W. Y. Sim, H. J. Yoon, O. C. Jeong, and S. S. Yang, J. Micromech. Microeng. 13, 286 (2003).
http://dx.doi.org/10.1088/0960-1317/13/2/317
29.
29. R. Pal, M. Yang, B. N. Johnson, D. T. Burke, and M. A. Burns, Anal. Chem. 76, 3740 (2004).
http://dx.doi.org/10.1021/ac0352934
30.
30. P. J. Hesketh, J. S. Bintoro, and R. Luharuka, Sens. Update 13, 233 (2004).
http://dx.doi.org/10.1002/seup.200390019
31.
31. K. W. Oh and C. H. Ahn, J. Micromech. Microeng. 16, R13 (2006).
http://dx.doi.org/10.1088/0960-1317/16/5/R01
32.
32. P. Muller, H. Henkel, and S. Klinker, Proceedings of the 40th Aeromechanics Symposium, 12–14 May (Curran, New York, 2010), p. 341.
33.
33. C. A. Kukkonen and S. Venneri, Space Technol. 17, 195 (1997).
http://dx.doi.org/10.1016/S0892-9270(97)00037-7
34.
34. M. D. Maziere, M. V. Roozendael, and A. Merlaud, in Proceedings of the Second International Workshop on the Future of Sensing, Antwerp, Belgium, 17–18 October 2006.
35.
35. C. Crevoisier, C. Sweeney, M. Gloor, J. L. Sarmiento, and P. P. Tans, Proc. Natl. Acad. Sci. U.S.A 107, 18348 (2010).
http://dx.doi.org/10.1073/pnas.0900062107
36.
36. J. M. Daida and J. F. Vesecky, Proc. IEEE Top. Symp. Comb. Optical, Microwave, Earth and Atmospheric Sensing, 22–25 March (1993).
37.
37. J. M. Daida, P. B. Russell, T. L. Crawford, and J. F. Vesecky, IEEE Trans. Geosci. Remote Sens. 2, 1248 (1994).
38.
38. K. Spokas, D. Wang, and R. Venterea, Soil Biol. Biochem. 37, 475 (2005).
http://dx.doi.org/10.1016/j.soilbio.2004.08.010
39.
39. P. Makiranta, J. Hytonen, L. Aro, M. Maljanen, M. Pihlatie, H. Potila, N. J. Shurpali, J. Laine, A. Lohila, P. J. Martikainen, and K. Minkkinen, Boreal Environ. Res. 12, 159 (2007).
40.
40. F. Keppler, J. T. G. Hamilton, M. Brass, and T. Rockmann, Nature (London) 439, 187 (2006).
http://dx.doi.org/10.1038/nature04420
41.
41. M. Marquis and P. Tans, Science 320, 460 (2008).
http://dx.doi.org/10.1126/science.1156451
43.
43. T. J. Schuck, C. A. M. Brenninkmeijer, F. Slemr, I. X. Remy, and A. Zahn, Atmos. Meas. Tech. 2, 449 (2009).
http://dx.doi.org/10.5194/amt-2-449-2009
44.
44. S. Morimoto, T. Yamanouchi, H. Honda, I. Ijima, T. Yoshida, S. Aoki, T. Nakazawa, S. Ishidoya, and S. Sugawara, J. Atmos. Ocean. Technol. 26, 212 (2009).
http://dx.doi.org/10.1175/2009JTECHA1283.1
45.
45. D. Ginting, S. L. Arnold, N. S. Arnold, and R. S. Tubbs, J. Plant Nutrition 30, 1441 (2007).
http://dx.doi.org/10.1080/01904160701555291
46.
46. R. F. Weiss and R. G. Prinn, Philos. Trans. R. Soc. London, Ser. A 369, 1925 (2011).
http://dx.doi.org/10.1098/rsta.2011.0006
47.
47. D. Sonnenfroh and K. Parameswaran, Optics InfoBase CLEO2011, CThT5, 2011.
48.
48. K. H. Favela, T. Jaeckle, L. Wiebush, and P. Tans, AMS Summer Meeting, National Center for Atmospheric Research, Boulder, CO, 8–11 August 2011.
49.
49. H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, GW. Santoni, and S. C. Wofsy, Atmos. Meas. Tech. 3, 375 (2010).
http://dx.doi.org/10.5194/amt-3-375-2010
50.
50. A. K. Baker, F. Slemr, and C. A. M. Brenninkmeijer, Atmos. Meas. Tech. 3, 311 (2010).
http://dx.doi.org/10.5194/amt-3-311-2010
51.
51. V. Dubourg, F. Nouel, M. Bidau, H. Laplace, A. Vecten, P. Coquerez, P. Maurov, and P. Malaterre, AIAA International Balloon Technology, 1997/06/03-1997/06/05, 1997.
52.
52. D. J. Nagel, Microelectron. J. 33, 107 (2002).
http://dx.doi.org/10.1016/S0026-2692(01)00110-0
53.
53. J. Pollmann, D. Helmig, J. Hueber, D. Tanner, and P. P. Tans, J. Chromatogr. A 1134, 1 (2006).
http://dx.doi.org/10.1016/j.chroma.2006.08.050
54.
54.From the perspective of surface area of the fabricated valves through which evolved CO2 would escape, we can estimate the contamination bias error. Consider the total wall area of the cylindrical entrance hole through the solder mound, and assume that half of any CO2 evolved from that wall diffuses into the chamber, the other half diffusing into the ambient. Compared with the total surface area of the solder valve material, this area is just 4% of the total. Thus the bias estimate is at least 25 times too large. Factoring the closing of the hole during outgassing, the area of the entrance hole relative to the total valve area is 0.5%. In this case, the estimate becomes 200 times too large. The bias estimates are thus overestimated by 25–200 times. These calculations reduce the bias to a maximum of 0.09 ppmv for the best condition from Table IV, and 0.02 ppmv for the best condition of Table V, assuming the 25 times overestimate value just calculated. Finally, 1 ml was chosen as a starting point for manufacture. It would be just as simple to make 10–50 ml chambers, in which case the bias drops by 10–50 from the 1 ml case study.
55.
55.PFP vessels, using a two stage pump-compressor system, have demonstrated filling rates of 5–20 l/min and filling times of 40 s to 1 min (http://www.esrl.noaa.gov/gmd/ccgg/aircraft/sampling.html and http://www.bgc-jena.mpg.de/bgc-systems/pmwiki2/uploads/PhdAmpDiplomaThesis/baum.pdf). CARIBIC vessels in Refs. 43 and 50 required 30 s to 1.5 min to fill using a three-stage pump compressor capable of up to 30 l/min. Schuck (Ref. 43) used a three-stage pump to produce 200–300 mbar (20–30 kPa) of pressure at the sampler inlet. If we used a similar scheme with our miniature samplers, and sample at 30 000 ft, the chamber-filling pressure difference would be 0.174 psig (1.2 kPa). Correcting for temperature and altitude, the orifice flow rate (www.okcc.com) is 0.15 l/min, requiring only 20 s to fill a 50 ml sample chamber. The altitude resolution (for controlled descents) or lateral resolution (for airplane or UAV systems), is therefore much greater with the miniature vessels even considering the orifice flow restriction. Incidentally, such a 50 ml chamber can provide sufficient sample for ∼50 GC-MS analyses.
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/3/10.1063/1.3688856
Loading
/content/aip/journal/rsi/83/3/10.1063/1.3688856
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/83/3/10.1063/1.3688856
2012-03-13
2014-08-20

Abstract

The deleterious consequences of climate change are well documented. Future climate treaties might mandate greenhouse gas(GHG) emissions measurement from signatories in order to verify compliance. The acquisition of atmospheric chemistry would benefit from low cost, small size/weight/power of microsystems. In this paper, we investigated several key materials science aspects of a phase-change microvalve (PCμV) technology with low power/size/weight/cost for ubiquitous GHG sampling. The novel design, based on phase-changematerial low-melting-point eutectic metal alloys (indium-bismuth, InBi and tin-lead, SnPb), could be actuated at temperatures as low as 72 °C. Valve manufacturing was based on standard thick and thin-film processes and solder technologies that are commonly used in industry, enabling low-cost, high-volume fabrication. Aging studies showed that it was feasible to batch fabricate the PCμVs and store them for future use, especially in the case of SnPb alloys. Hermetic sealing of the valve prototypes was demonstrated through helium leak testing, and Mil spec leak rates less than 1 × 10−9 atm cm3/s were achieved. This confirms that the sample capture and analysis interval can be greatly expanded, easing the logistical burdens of ubiquitous GHG monitoring. Highly conservative and hypothetical CO2 bias due to valve actuation at altitude in 1 cm3 microsamplers would be significantly below 1.0 and 2.2 ppmv for heat-treated InBi and SnPb solders, respectively. The CO2 bias from the PCμV scales well, as a doubling of sampler volume halved the bias. We estimated the shelf life of the SnPb PCμVs to be at least 2.8 years. These efforts will enable the development of low cost, low dead volume, small size/weight microsystems for monitoring GHGs and volatile organic compounds.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/83/3/1.3688856.html;jsessionid=4icm9a94sr7vt.x-aip-live-03?itemId=/content/aip/journal/rsi/83/3/10.1063/1.3688856&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Invited Article: A materials investigation of a phase-change micro-valve for greenhouse gas collection and other potential applications
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/3/10.1063/1.3688856
10.1063/1.3688856
SEARCH_EXPAND_ITEM