Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, T. Accadia, F. Acernese, C. Adams, R. Adhikari, P. Ajith, B. Allen et al., Classical Quant. Grav. 27, 173001+ (2010).
2. B. P. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen, G. Allen, R. S. Amin, S. B. Anderson, W. G. Anderson, M. A. Arain et al., Rep. Prog. .Phys. 72, 076901+ (2009).
3. F. Acernese, P. Amico, M. Alshourbagy, F. Antonucci, S. Aoudia, P. Astone, S. Avino, L. Baggio, G. Ballardin, F. Barone et al., J. Opt. A, Pure Appl. Opt. 10, 064009+ (2008).
4. H. Lück, M. Hewitson, P. Ajith, B. Allen, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B. W. Barr, S. Berukoff et al., Classical Quant. Grav. 23, S71 (2006).
5. R. Adhikari, P. Fritschel, and S. Waldman, “Enhanced LIGO,” Technical Report T060156, LIGO Laboratory, 2006.
6. H. Lück, C. Affeldt, J. Degallaix, A. Freise, H. Grote, M. Hewitson, S. Hild, J. Leong, M. Prijatelj, K. A. Strain, B. Willke, H. Wittel, and K. Danzmann, J. Phys.: Conf. Ser. 228, 012012+ (2010).
7. Advanced LIGO Systems Group, “Advanced LIGO Systems Design,” Technical Report T010075, LIGO Laboratory, 2009.
8. N. A. Robertson, B. Abbott, R. Abbott, R. Adhikari, G. S. Allen, H. Armandula, S. M. Aston, A. Baglino, M. Barton, B. Bland et al., Proc. SPIE 5500, pp. 8191 (2004).
9. B. J. Meers, Phys. Rev. D 38, 2317 (1988).
10. T. Fricke, N. Smith-Lefebvre, R. Abbott, R. Adhikari, K. Dooley, M. Evans, P. Fritschel, V. Frolov, K. Kawabe, J. Kissel, B. Slagmolen, and S. Waldman, Classical Quant. Grav. 29, 065005 (2012).
11. J. S. Kissel, “Calibrating and Improving the Sensitivity of the LIGO Detectors,” Ph.D. dissertation (Louisiana State University, 2010).
12. M. Frede, B. Schulz, R. Wilhelm, P. Kwee, F. Seifert, B. Willke, and D. Kracht, Opt. Express 15, 459 (2007).
13. P. Willems, A. Brooks, M. Mageswaran, V. Sannibale, C. Vorvick, D. Atkinson, R. Amin, and C. Adams, “Thermal compensation in enhanced LIGO,” Technical Report G0900182, LIGO Laboratory, 2009.
14. K. Dooley, “Design and performance of high laser power interferometers for gravitational-wave detection,” Ph.D. dissertation (University of Florida, 2011).
15. J. Camp, D. Reitze, and D. Tanner, “Input/output optics conceptual design,” Technical Report T960170, LIGO Laboratory, 1996.
16. J. Camp, D. Reitze, and D. Tanner, “Input optics design requirements document,” Technical Report T960093, LIGO Laboratory, 1997.
17. P. Fritschel, R. Bork, G. González, N. Mavalvala, D. Ouimette, H. Rong, D. Sigg, and M. Zucker, Appl. Opt. 40, 4988 (2001).
18. R. Adhikari, A. Bengston, Y. Buchler, T. Delker, D. Reitze, Q.-z. Shu, D. Tanner, and S. Yoshida, “Input optics final design,” Technical Report T980009, LIGO Laboratory, 1998.
19. UF LIGO Group and IAP Group, “Upgrading the input optics for high power operation,” Technical Report E060003, LIGO Laboratory, 2006.
20. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, IEEE J. Quantum Electron. 35, 1116 (1999).
21. A. L. Bullington, B. T. Lantz, M. M. Fejer, and R. L. Byer, Appl. Opt. 47, 2840 (2008).
22. M. Arain, “A note on substrate thermal lensing in mode cleaner,” Technical Report T070095, LIGO Laboratory, 2007.
23. V. Quetschke, “Electro-Optic Modulators and Modulation for Enhanced LIGO and Beyond,” in Coherent Optical Technologies and Applications (Optical Society of America, 2008), paper CMC1.
24. F. Raab and S. Whitcomb, “Estimation of special optical properties of a triangular ring cavity,” Technical Report T920004, LIGO Laboratory, 1992.
25. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, and D. H. Reitze, J. Opt. Soc. Am. B 17, 99 (2000).
26. G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, Classical Quant. Grav. 19, 1793+ (2002).
27. E. Khazanov, N. F. Andreev, A. Mal'shakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, IEEE J. Quant. Electron. 40, 1500 (2004).
28. The VIRGO Collaboration, Appl. Opt. 47, 5853 (2008).
29. N. P. Barnes and L. B. Petway, J. Opt. Soc. Am. B 9, 1912 (1992).
30. T. Delker, R. Adhikari, S. Yoshida, and D. Reitze, “Design considerations for LIGO mode-matching telescopes,” Technical Report T970143, LIGO Laboratory, 1997.
31. G. Billingsley, “Specification: Substrate, mode cleaner flat mirror, 40M RSE experiment,” Technical Report E010033, LIGO Laboratory, 2001.
32. M. Punturo, “The mirror resonant modes method for measuring the optical absorption,” Technical Report VIR-001A-07, VIRGO, 2007.
33.See for COMSOL.
34. P. Kwee, F. Seifert, B. Willke, and K. Danzmann, Rev. Sci. Instrum. 78 (2007).
35. I. Snetkov, I. Mukhin, O. Palashov, and E. Khazanov, Opt. Express 19, 6366 (2011).

Data & Media loading...


Article metrics loading...



We present the design and performance of the LIGO Input Optics subsystem as implemented for the sixth science run of the LIGOinterferometers. The Initial LIGO Input Optics experienced thermal side effects when operating with 7 W input power. We designed, built, and implemented improved versions of the Input Optics for Enhanced LIGO, an incremental upgrade to the Initial LIGOinterferometers, designed to run with 30 W input power. At four times the power of Initial LIGO, the Enhanced LIGO Input Optics demonstrated improved performance including better optical isolation, less thermal drift, minimal thermal lensing, and higher optical efficiency. The success of the Input Optics design fosters confidence for its ability to perform well in Advanced LIGO.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd