1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
A method to provide rapid in situ determination of tip radius in dynamic atomic force microscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/83/4/10.1063/1.4704376
1.
1.G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930933 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.930
2.
2.R. Garcia, Amplitude Modulation Atomic Force Microscopy (Wiley-VCH, Weinheim, 2010).
3.
3.B. V. Derjaguin, V. Muller, and Y. Toporov, J Colloid Interface Sci. 53(2), 314326 (1975).
http://dx.doi.org/10.1016/0021-9797(75)90018-1
4.
4.H. C. Hamaker, Physica 4(10), 10581072 (1937).
http://dx.doi.org/10.1016/S0031-8914(37)80203-7
5.
5.R. Garcia and A. San Paulo, Phys. Rev. B 60(7), 49614967 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.4961
6.
6.L. Zitzler, S. Herminghaus, and F. Mugele, Phys. Rev. B 66, 155436155438 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.155436
7.
7.J. Israelachvili, Intermolecular & Surface Forces, 2 ed. (Academic, 1991).
8.
8.R. Stark, G. Schitter, and A. Stemmer, Phys. Rev. B 68(8), 085401 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.085401
9.
9.S. Santos and N. H. Thomson, Appl. Phys. Lett. 98, 013101013103 (2011).
http://dx.doi.org/10.1063/1.3532097
10.
10.S. Santos, V. Barcons, J. Font, and N. H. Thomson, Nanotechnology 21(22), 225710225720 (2010).
http://dx.doi.org/10.1088/0957-4484/21/22/225710
11.
11.S. Santos, K. R. Gadelrab, T. Souier, M. Stefancich, and M. Chiesa, Nanoscale 4, 792800 (2012).
http://dx.doi.org/10.1039/c1nr10954e
12.
12.M. L. Bloo, H. Haitjema, and W. O. Pril, Measurement 25, 203211 (1999).
http://dx.doi.org/10.1016/S0263-2241(99)00004-4
13.
13.R. H. Geiss, M. Kopycinska-Müller, and D. C. Hurley, Microsc. Microanal. 11(2), 364365 (2005).
http://dx.doi.org/10.1017/S1431927605508419
14.
14.R. W. Carpick and M. Salmeron, Chem. Rev. 67, 11631195 (1997).
http://dx.doi.org/10.1021/cr960068q
15.
15.S. J. Fang, S. Haplepete, W. Chen, and C. R. Helms, J. Appl. Phys. 82(12), 58915898 (1997).
http://dx.doi.org/10.1063/1.366489
16.
16.A. G. Khurshudov, K. Kato, and H. Koide, Tribol. Lett. 2, 345354 (1996).
http://dx.doi.org/10.1007/BF00156907
17.
17.F. Biscarini and P. Levy, Appl. Phys. Lett. 71(7), 888890 (1997).
http://dx.doi.org/10.1063/1.119678
18.
18.X. Chen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, P. M. Williams, and N. A. Burnham, Surf. Sci. 460, 292300 (2000).
http://dx.doi.org/10.1016/S0039-6028(00)00574-4
19.
19.Y. Martin, C. C. Williams, and H. K. Wickramasinghe, J. Appl. Phys. 61, 47234729 (1987).
http://dx.doi.org/10.1063/1.338807
20.
20.J. Tamayo and R. Garcia, Langmuir 12(18), 44304435 (1996).
http://dx.doi.org/10.1021/la960189l
21.
21.H. G. Hansma and J. H. Hoh, Ann. Rev. Biophys. Biomol. Struct. 23, 115140 (1994).
http://dx.doi.org/10.1146/annurev.bb.23.060194.000555
22.
22.Q. Zhong, D. Innlss, K. Kjoller, and V. B. Elings, Surf. Sci. Lett. 290, L688L692 (1993).
http://dx.doi.org/10.1016/0039-6028(93)90582-5
23.
23.A. l. Weisenhorn, P. K. Hansma, T. R. Albrecht, and C. F. Quate, Appl. Phys. Lett. 54, 26512653 (1989).
http://dx.doi.org/10.1063/1.101024
24.
24.B. Drake, C. B. Prater, A. L. Weisenhorn, S. A. Gould, T. R. Albrecht, C. F. Quate, D. S. Cannell, H. G. Hansma, and P. K. Hansma, Science 243, 1586 (1989).
http://dx.doi.org/10.1126/science.2928794
25.
25.P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, and H. G. Hansma, Appl. Phys. Lett. 64, 17381740 (1994).
http://dx.doi.org/10.1063/1.111795
26.
26.B. Anczykowski, D. Krüger, and H. Fuchs, Phys. Rev. B 53(23), 1548515488 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.15485
27.
27.R. Boisgard, D. Michel, and J. P. Aime, Surf. Sci. 401, 199205 (1998).
http://dx.doi.org/10.1016/S0039-6028(97)01079-0
28.
28.R. Garcia and R. Perez, Surf. Sci. Rep. 47 197301 (2002).
http://dx.doi.org/10.1016/S0167-5729(02)00077-8
29.
29.R. Garcia and A. San Paulo, Phys. Rev. B 61, R13381R13384 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.R13381
30.
30.A. San Paulo and R. Garcia, Phys. Rev. B 66(4), 041406 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.041406
31.
31.R. W. Stark, Mater. Today 13(9), 2432 (2010).
http://dx.doi.org/10.1016/S1369-7021(10)70162-0
32.
32.S. Santos, V. Barcons, J. Font, and N. H. Thomson, J. Phys. D: Appl. Phys. 43, 275401275407 (2010).
http://dx.doi.org/10.1088/0022-3727/43/27/275401
33.
33.P. Gleyzes, P. K. Kuo, and A. C. Boccara, Appl. Phys. Lett. 58, 29892991 (1991).
http://dx.doi.org/10.1063/1.104690
34.
34.J. P. Aimé, R. Boisgard, L. Nony, and G. Couturier, Phys. Rev. Lett. 82(17), 33883391 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3388
35.
35.L. Nony, R. Boisgard, and J. P. Aime, J. Chem. Phys. 111(4), 16151627 (1999).
http://dx.doi.org/10.1063/1.479422
36.
36.M. Marth, D. Maier, and J. Honerkamp, J. Appl. Phys. 85(10), 70307036 (1999).
http://dx.doi.org/10.1063/1.370508
37.
37.S. Santos, V. Barcons, A. Verdaguer, and M. Chiesa, J. Appl. Phys. 110(11), 114902114911 (2011).
http://dx.doi.org/10.1063/1.3663437
38.
38.J. Cleveland, S. Manne, D. Bocek, and P. K. Hansma, Rev. Sci. Instrum. 64(2), 403405 (1993).
http://dx.doi.org/10.1063/1.1144209
39.
39.J. E. Sader, J. W. M. Chon, and P. Mulvaney, Rev. Sci. Instrum. 70, 3967 (1999).
http://dx.doi.org/10.1063/1.1150021
40.
40.J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 18681873 (1993).
http://dx.doi.org/10.1063/1.1143970
41.
41.J. Tamayo and R. Garcia, Appl. Phys. Lett. 73(20), 29262928 (1998).
http://dx.doi.org/10.1063/1.122632
42.
42.J. P. Cleveland, B. Anczykowski, A. E. Schmid, and V. B. Elings, Appl. Phys. Lett. 72(20), 26132615 (1998).
http://dx.doi.org/10.1063/1.121434
43.
43.S. Santos, A. Verdaguer, T. Souier, H. N. Thomson, and M. Chiesa, Nanotechnology 22(46), 465705465713 (2011).
http://dx.doi.org/10.1088/0957-4484/22/46/465705
44.
44.See supplementary material at http://dx.doi.org/10.1063/1.4704376 for further details on the sequence of APD obtained for the system described in Fig. 6.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/4/10.1063/1.4704376
Loading
/content/aip/journal/rsi/83/4/10.1063/1.4704376
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/83/4/10.1063/1.4704376
2012-04-24
2015-03-02

Abstract

We provide a method to characterize the tip radius of an atomic force microscopyin situ by monitoring the dynamics of the cantilever in ambient conditions. The key concept is that the value of free amplitude for which transitions from the attractive to repulsive force regimes are observed, strongly depends on the curvature of the tip. In practice, the smaller the value of free amplitude required to observe a transition, the sharper the tip. This general behavior is remarkably independent of the properties of the sample and cantilever characteristics and shows the strong dependence of the transitions on the tip radius. The main advantage of this method is rapid in situ characterization. Rapid in situ characterization enables one to continuously monitor the tip size during experiments. Further, we show how to reproducibly shape the tip from a given initial size to any chosen larger size. This approach combined with the in situ tip size monitoring enables quantitative comparison of materials measurements between samples. These methods are set to allow quantitative data acquisition and make direct data comparison readily available in the community.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/83/4/1.4704376.html;jsessionid=ehe4ub5v18yn.x-aip-live-02?itemId=/content/aip/journal/rsi/83/4/10.1063/1.4704376&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A method to provide rapid in situ determination of tip radius in dynamic atomic force microscopy
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/4/10.1063/1.4704376
10.1063/1.4704376
SEARCH_EXPAND_ITEM