Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/83/4/10.1063/1.4704459
1.
1. B. Willke, Class. Quantum Grav. 19, 1377 (2002).
http://dx.doi.org/10.1088/0264-9381/19/7/321
2.
2. D. Sigg and the LIGO Scientific Collaboration, Class. Quantum Grav. 25, 114041 (2008).
http://dx.doi.org/10.1088/0264-9381/25/11/114041
3.
3. F. Acernese, M. Alshourbagy, P. Amico, F. Antonucci, S. Aoudia, P. Astone, S. Avino, L. Baggio, G. Ballardin, F. Barone, L. Barsotti, M. Barsuglia, T. S. Bauer, S. Bigotta, S. Birindelli, M. A. Bizouard, C. Boccara, F. Bondu, L. Bosi, S. Braccini, C. Bradaschia, A. Brillet, V. Brisson, D. Buskulic, G. Cagnoli, E. Calloni, E. Campagna, F. Carbognani, F. Cavalier, R. Cavalieri, G. Cella, E. Cesarini, E. Chassande-Mottin, A.-C. Clapson, F. Cleva, E. Coccia, C. Corda, A. Corsi, F. Cottone, J.-P. Coulon, E. Cuoco, S. D'Antonio, A. Dari, V. Dattilo, M. Davier, R. De Rosa, M. DelPrete, L. Di Fiore, A. Di Lieto, M. D. P. Emilio, A. Di Virgilio, M. Evans, V. Fafone, I. Ferrante, F. Fidecaro, I. Fiori, R. Flaminio, J.-D. Fournier, S. Frasca, F. Frasconi, L. Gammaitoni, F. Garufi, E. Genin, A. Gennai, A. Giazotto, L. Giordano, V. Granata, C. Greverie, D. Grosjean, G. Guidi, S. Hamdani, S. Hebri, H. Heitmann, P. Hello, D. Huet, S. Kreckelbergh, P. La Penna, M. Laval, N. Leroy, N. Letendre, B. Lopez, M. Lorenzini, V. Loriette, G. Losurdo, J.-M. Mackowski, E. Majorana, C. N. Man, M. Mantovani, F. Marchesoni, F. Marion, J. Marque, F. Martelli, A. Masserot, F. Menzinger, L. Milano, Y. Minenkov, C. Moins, J. Moreau, N. Morgado, S. Mosca, B. Mours, I. Neri, F. Nocera, G. Pagliaroli, C. Palomba, F. Paoletti, S. Pardi, A. Pasqualetti, R. Passaquieti, D. Passuello, F. Piergiovanni, L. Pinard, R. Poggiani, M. Punturo, P. Puppo, P. Rapagnani, T. Regimbau, A. Remillieux, F. Ricci, I. Ricciardi, A. Rocchi, L. Rolland, R. Romano, P. Ruggi, G. Russo, S. Solimeno, A. Spallicci, M. Tarallo, R. Terenzi, A. Toncelli, M. Tonelli, E. Tournefier, F. Travasso, C. Tremola, G. Vajente, J. F. J. van den Brand, S. van der Putten, D. Verkindt, F. Vetrano, A. Viceré, J.-Y. Vinet, H. Vocca, and M. Yvert, Class. Quantum Grav. 25, 114045 (2008).
http://dx.doi.org/10.1088/0264-9381/25/11/114045
4.
4. G. M. Harry and the LIGO Scientific Collaboration, Class. Quantum Grav. 27, 084006 (2010).
http://dx.doi.org/10.1088/0264-9381/27/8/084006
5.
5. S. Rowan, J. Hough, and D. R. M. Crooks, Phys. Lett. A 347, 25 (2005).
http://dx.doi.org/10.1016/j.physleta.2005.06.055
6.
6. M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, Rev. Sci. Instrum. 69, 3055 (1998).
http://dx.doi.org/10.1063/1.1149054
7.
7. S. Braccini, C. Casciano, F. Cordero, F. Corvace, M. DeSanctis, R. Franco, F. Frasconi, E. Majorana, G. Paparo, R. Passaquieti, P. Rapagnani, F. Ricci, D. Righetti, A. Solina, and R. Valentini, Meas. Sci. Technol. 11, 467 (2000).
http://dx.doi.org/10.1088/0957-0233/11/5/304
8.
8. R. Abbott, R. Adhikari, G. Allen, D. Baglino, C. Campbell, D. Coyne, E. Daw, D. DeBra, J. Faludi, P. Fritschel, A. Ganguli, J. Giaime, M. Hammond, C. Hardham, G. Harry, W. Hua, L. Jones, J. Kern, B. Lantz, K. Lilienkamp, K. Mailand, K. Mason, R. Mittleman, S. Nayfeh, D. Ottaway, J. Phinney, W. Rankin, N. Robertson, R. Scheffler, D. H. Shoemaker, S. Wen, M. Zucker, and L. Zuo, Class. Quantum Grav. 21, 915 (2004).
http://dx.doi.org/10.1088/0264-9381/21/5/081
9.
9. M. V. Plissi, C. I. Torrie, M. Barton, N. A. Robertson, A. Grant, C. A. Cantley, K. A. Strain, P. A. Willems, J. H. Romie, K. D. Skeldon, M. M. Perreur-Lloyd, R. A. Jones, and J. Hough, Rev. Sci. Instrum. 75, 4516 (2004).
http://dx.doi.org/10.1063/1.1795192
10.
10. M. V. Plissi, C. I. Torrie, M. E. Husman, N. A. Robertson, K. A. Strain, H. Ward, H. Lück, and J. Hough, Rev. Sci. Instrum. 71, 2539 (2000).
http://dx.doi.org/10.1063/1.1150645
11.
11. N. A. Robertson, G. Cagnoli, D. R. M. Crooks, E. Elliffe, J. E. Faller, P. Fritschel, S. Goßler, A. Grant, A. Heptonstall, J. Hough, H. Lück, R. Mittleman, M. Perreur-Lloyd, M. V. Plissi, S. Rowan, D. H. Shoemaker, P. H. Sneddon, K. A. Strain, C. I. Torrie, H. Ward, and P. Willems, Class. Quantum Grav. 19, 4043 (2002).
http://dx.doi.org/10.1088/0264-9381/19/15/311
12.
12. C. Torrie, “Development of suspensions for the Geo 600 gravitational wave detector,” Ph.D. dissertation (University of Glasgow, 1999).
13.
13. M. Barton, Models of the Advanced LIGO Suspensions in Mathematica, Internal Technical Document T020205-02D (LIGO, 2006).
14.
14. B. Shapiro, Fitting the Quad Noise Prototype Model to Measured Data, Internal Technical Document T1000458 (LIGO, 2010).
15.
15. L. Ruet, “Active control and sensor noise filtering duality application to advanced LIGO suspensions,” Ph.D. dissertation (Institut National des Sciences Appliques de Lyon (INSA Lyon), 2007).
16.
16. B. Shapiro, “Modal control with state estimation for advanced LIGO quadruple suspensions,” Master's thesis (Massachusetts Institute of Technology, 2007).
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/4/10.1063/1.4704459
Loading
/content/aip/journal/rsi/83/4/10.1063/1.4704459
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/83/4/10.1063/1.4704459
2012-04-18
2016-02-14

Abstract

The mirrors of laser interferometric gravitational wave detectors hang from multi-stage suspensions. These support the optics against gravity while isolating them from external vibration. Thermal noise must be kept small so mechanical loss must be minimized and the resulting structure has high-Q resonances rigid-body modes, typically in the frequency range between about 0.3 Hz and 20 Hz. Operation of the interferometer requires these resonances to be damped. Active damping provides the design flexibility required to achieve rapid settling with low noise. In practice there is a compromise between sensor performance, and hence cost and complexity, and sophistication of the control algorithm. We introduce a novel approach which combines the new technique of modal damping with methods developed from those applied in GEO 600. This approach is predicted to meet the goals for damping and for noise performance set by the Advanced LIGO project.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/83/4/1.4704459.html;jsessionid=1vmv7h2udf1mo.x-aip-live-06?itemId=/content/aip/journal/rsi/83/4/10.1063/1.4704459&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd