1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Invited Review Article: Practical guide for pyroelectric measurementsa)
a)A related review, Related Article(s): Zammit et al. [Rev. Sci. Instrum, 82, 121101 (Year: 2011)]

, and a perspective, Mandelis Perspective Related Article(s): [Rev. Sci. Instrum.82, 120901 (Year: 2011)]

, discussing this have been published.
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/83/5/10.1063/1.4709621
1.
1. J. Cooper, Rev. Sci. Instrum. 1, 92 (1962).
http://dx.doi.org/10.1063/1.1717673
2.
2. C. B. Roundy and R. L. Byer, Appl. Phys. Lett. 21, 512515 (1972).
http://dx.doi.org/10.1063/1.1654239
3.
3. S. B. Lang, Phys. Today 1(8), 3136 (2005).
http://dx.doi.org/10.1063/1.2062916
4.
4. S. T. Liu and D. Long, Proc. IEEE 1, 1426 (1978).
http://dx.doi.org/10.1109/PROC.1978.10835
5.
5. D. W. Deis and G. W. Roland, Appl. Phys. Lett. 1, 220 (1972).
http://dx.doi.org/10.1063/1.1654352
6.
6. D. W. Deis and G. W. Roland, Appl. Phys. Lett. 1, 554 (1973).
http://dx.doi.org/10.1063/1.1654505
7.
7. S. T. Liu, J. D. Zook, and D. Long, Ferroelectrics 1, 3943 (1975).
http://dx.doi.org/10.1080/00150197508240079
8.
8. J. D. Zook and S. T. Liu, Ferroelectrics 1, 371376 (1976).
http://dx.doi.org/10.1080/00150197608236583
9.
9. E. A. Myzgin, B. A. Chayanov, L. A. Beresnev, and L. M. Blinov, Kristallografiya 1, 204204 (1982).
10.
10. J. Parravicini, J. Safioui, V. Degiorgio, P. Minzioni, and M. Chauvet, J. Appl. Phys. 109, 033106 (2011).
http://dx.doi.org/10.1063/1.3544069
11.
11. A. K. Tagantsev, Phys. Rev. B 1, 58835889 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.5883
12.
12. A. K. Tagantsev, Phase Transitions 1, 119203 (1991).
http://dx.doi.org/10.1080/01411599108213201
13.
13. W. H. Ma and L. E. Cross, Appl. Phys. Lett. 1, 32933295 (2003).
http://dx.doi.org/10.1063/1.1570517
14.
14. W. H. Ma and L. E. Cross, Appl. Phys. Lett. 1, 34403442 (2002).
http://dx.doi.org/10.1063/1.1518559
15.
15. J. Y. Fu and L. E. Cross, Ferroelectrics 1, 238245 (2007).
http://dx.doi.org/10.1080/00150190701455005
16.
16. L. B. Schein, P. J. Cressman, and L. E. Cross, Ferroelectrics 22(1), 937943 (1979).
17.
17. L. B. Schein, P. J. Cressman, and L. E. Cross, Ferroelectrics 22(1), 945948 (1979).
18.
18. D. Damjanovic, Rep. Prog. Phys. 1, 12671324 (1998).
http://dx.doi.org/10.1088/0034-4885/61/9/002
19.
19. N. M. Shorrocks, R. W. Whatmore, and P. C. Osbond, Ferroelectrics 1, 387392 (1990).
http://dx.doi.org/10.1080/00150199008214614
20.
20. C. A. Rezende, R. F. Gouveia, M. A. da Silva, and F. Galembeck, J. Phys.: Condens. Matter 21, 263002 (2009).
http://dx.doi.org/10.1088/0953-8984/21/26/263002
21.
21. R. Kressmann, G. M. Sessler, and P. Gunther, IEEE Trans. Dielectr. Electr. Insul. 1, 607623 (1996).
http://dx.doi.org/10.1109/94.544184
22.
22. C. B. Sawyer and C. H. Tower, Phys. Rev. 1, 269 (1930).
http://dx.doi.org/10.1103/PhysRev.35.269
23.
23. F. Jona and G. Shirane, Ferroelectric Brystals (Dover Publications, New York, 1998).
24.
24. M. Dawber, I. Farnan, and J. F. Scott, Am. J. Phys. 1, 819822 (2003).
http://dx.doi.org/10.1119/1.1561271
25.
25. S. Domanski, Proc. Phys. Soc. 1, 306 (1958).
http://dx.doi.org/10.1088/0370-1328/72/2/128
26.
26. J. Hatano, H. Takeuchi, M. Harazaki, and T. Watanabe, Jpn. J. Appl. Phys., Part 1 31, 32353237 (1992).
http://dx.doi.org/10.1143/JJAP.31.3235
27.
27.See http://www.ferrodevices.com/tester.html#general for the capabilities of modern ferroelectric testers.
28.
28. L. Pintilie and M. Alexe, Appl. Phys. Lett. 87, art. 112903 (2005).
http://dx.doi.org/10.1063/1.2045543
29.
29. W. C.-Y. Liu, thesis, University of California, Los Angeles, 1983.
30.
30. S. B. Lang and F. Steckel, Rev. Sci. Instrum. 36, 929932 (1965).
http://dx.doi.org/10.1063/1.1719787
31.
31. A. M. Glass, J. Appl. Phys. 40, 46994713 (1969).
http://dx.doi.org/10.1063/1.1657277
32.
32. R. L. Byer and C. B. Roundy, IEEE Trans. Sonics Ultrason. Su19, 333338 (1972).
http://dx.doi.org/10.1109/T-SU.1972.29679
33.
33. R. L. Byer and C. B. Roundy, Ferroelectrics 3, 333338 (1972).
http://dx.doi.org/10.1080/00150197208235326
34.
34. Z. Li, A. Sun, J. Wu, G. Xu, Y. Li, J. Jiang, and P. Cui, Mater. Lett. 1, 20702073 (2009).
http://dx.doi.org/10.1016/j.matlet.2009.06.056
35.
35. M. Davis, D. Damjanovic, and N. Setter, J. Appl. Phys. 1, 28112815 (2004).
http://dx.doi.org/10.1063/1.1775308
36.
36. Y. Yvry, V. Lyahovitskaya, I. Zon, I. Lubomirsky, E. Wachtel, and A. L. Roytburd, Appl. Phys. Lett. 90, art. 172905 (2007).
http://dx.doi.org/10.1063/1.2730749
37.
37. A. G. Chynoweth, J. Appl. Phys. 1, 78 (1956).
http://dx.doi.org/10.1063/1.1722201
38.
38. B. R. Holeman, Infrared Phys. 1, 125 (1972).
http://dx.doi.org/10.1016/0020-0891(72)90016-4
39.
39. E. J. Sharp and L. E. Garn, J. Appl. Phys. 1, 89808987 (1982).
http://dx.doi.org/10.1063/1.330455
40.
40. R. W. Whatmore, O. Molter, and C. P. Shaw, J. Eur. Ceram. Soc. 1, 721728 (2003).
http://dx.doi.org/10.1016/S0955-2219(02)00162-0
41.
41. N. P. Hartley, P. T. Squire, and E. H. Putley, J. Phys. E: J. Sci. Instrum. 5, 787789 (1972).
http://dx.doi.org/10.1088/0022-3735/5/8/022
42.
42. E. H. Putley, Infrared Phys. 1, 139147 (1980).
http://dx.doi.org/10.1016/0020-0891(80)90020-2
43.
43. E. H. Putley, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic, New York, 1970), Vol. 5, pp. 259285.
44.
44. D. Ehre, V. Lyahovitskaya, A. Tagantsev, and I. Lubomirsky, Adv. Mater. 19, 15151517 (2007).
http://dx.doi.org/10.1002/adma.200602149
45.
45. Impedance Spectroscopy: Emphasizing Solid Materials and Systems, edited by J. R. Macdonald and W. R. Kenan (Willey, New York, 1987).
46.
46. Y. K. Tseng, K. S. Liu, J. D. Jiang, and I. N. Lin, Appl. Phys. Lett. 1, 32853287 (1998).
http://dx.doi.org/10.1063/1.121625
47.
47. Y. K. Tseng, K. S. Liu, J. D. Jiang, and I. N. Lin, Jpn. J. Appl. Phys. 1 1, 65526555 (1998).
http://dx.doi.org/10.1143/JJAP.37.6552
48.
48. S. Bauer and S. Bauer-Gogonea, IEEE Trans. Dielectr. Electr. Insul. 1, 883902 (2003).
http://dx.doi.org/10.1109/TDEI.2003.1237336
49.
49. R. G. Kepler, Annu. Rev. Phys. Chem. 1, 497518 (1978).
http://dx.doi.org/10.1146/annurev.pc.29.100178.002433
50.
50. H. Dveyaharon and P. L. Taylor, Ferroelectrics 1, 103110 (1981).
http://dx.doi.org/10.1080/00150198108008075
51.
51. G. W. Fabel and H. K. Henisch, Solid-State Electron. 14, (1971).
http://dx.doi.org/10.1016/0038-1101(71)90117-1
52.
52. A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists (CRC, New York, 2001), Chapters1.1.1-7, Example 4.
53.
53. L. E. Garn and E. J. Sharp, J. Appl. Phys. 1, 89748979 (1982).
http://dx.doi.org/10.1063/1.330454
54.
54. S. Muensit and S. B. Lang, Ferroelectrics 1, 341350 (2003).
http://dx.doi.org/10.1080/00150190390238748
55.
55. Y. Phermpornsakul, S. Muensit, and I. L. Guy, IEEE Trans. Dielectr. Electr. Insul. 11(2), 280285 (2004).
http://dx.doi.org/10.1109/TDEI.2004.1285898
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/5/10.1063/1.4709621
Loading
/content/aip/journal/rsi/83/5/10.1063/1.4709621
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/83/5/10.1063/1.4709621
2012-05-22
2014-08-20

Abstract

The characterization of pyroelectric materials is a necessary stage in the design of a large variety of pyroelectric-based devices ranging from intrusion alarms to IR cameras. The sample configurations and measurement techniques currently in use vary widely and require careful attention in order to avoid artifacts. In this review, we provide a practical guide to the measurement of the pyroelectric coefficient, paying particular attention to the new instrumental possibilities (fast sinusoidally modulated light sources, low impedance broad band current meters, and fast averaging oscilloscopes) that have become available during the last decade. Techniques applicable to bulk specimens, substrate-supported films, and self-supported films are described in detail. The most commonly used procedures are classified according to the type of thermal excitation: continuous ramping, heat pulse, and continuous oscillation. In the appendices, we describe the practical realization of these measurement schemes and provide mathematical descriptions for the extraction of the pyroelectric coefficient from the measured data.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/83/5/1.4709621.html;jsessionid=16ca7ns5bs8k2.x-aip-live-03?itemId=/content/aip/journal/rsi/83/5/10.1063/1.4709621&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Invited Review Article: Practical guide for pyroelectric measurementsa)
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/5/10.1063/1.4709621
10.1063/1.4709621
SEARCH_EXPAND_ITEM