Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. Chung, W. Jung, M. J. Hammer-Wilson, P. Wilder-Smith, and Z. Chen, Appl. Opt. 46, 3038 (2007).
2.V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, IEEE J. Sel. Top. Quantum Electron. 5, 1019 (1999).
3.I. H. Shin and D. Y. Kim, J. Biomed. Opt. 15, 016028 (2010).
4.A. N. Yaroslavsky, V. Neel, and R. R. Anderson, Opt. Lett. 29, 2010 (2004).
5.G. J. Schütz, G. Kada, V. P. Pastushenko, and H. Schindler, EMBO J. 19, 892 (2000).
6.M. G. Ismair, et al., Hepatology 49, 1673 (2009).
7.S. Charrin, F. Naour, O. Silvie, P. E. Milhiet, C. Boucheix, and E. Rubinstein, Biochem. J. 420, 133 (2009).
8.A. K. Neumann, M. S. Itano, and K. Jacobson, F1000 Biol Rep. 2, 31 (2010).
9.A. Kress, P. Ferrand, H. Rigneault, T. Trombik, H. T. He, D. Marguet, and S. Brasselet, Biophys. J. 20, 468 (2011).
10.D. Axelrod, Biophys. J. 26, 557 (1979).
11.H. S. Muddana, R. R. Gullapalli, E. Manias, and P. J. Butler, Phys. Chem. Chem. Phys. 13, 1368 (2011).
12.P. W. Livanec and R. C. Dunn, Langmuir 28, 14066 (2008).
13.W. C. Wimley and T. E. Thompson, Biochemistry 29, 1296 (1990).
14.J. Korlach, P. Schwille, W. W. Webb, and G. W. Feigenson, Proc. Natl. Acad. Sci. U.S.A. 96, 8461 (1999).
15.J. Hwang, L. K. Tamm, C. Bohm, T. S. Ramalingam, E. Betzig, and M. Edidin, Science 270, 610 (1995).
16.J. Rieppo, J. Hallikainen, J. Jurvelin, I. Kiviranta, H. J. Helminen, and M. Hyttinen, Microsc. Res. Tech. 71, 279 (2008).
17.See supplementary material at for the experimental results for Bodipy-PC labeled CA46 cells.[Supplementary Material]
18.J. Y. Lee, Ji Youn Lee, J. F. Lesoine, J. R. Krogmeier, H. Kang, M. Clarke, R. Chang, D. L. Sackett, R. Nossal, and J. C. Hwang, Proc. SPIE 7891, 78910Z1 (2011).
19.T. C. Larason and J. M. Houston, NIST Special Pub. 250-41 (2008);
20.K. W. Hipps and G. A. Crosby, J. Phys. Chem. 83, 555 (1979).
21.L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
22.M. A. Lieb, J. M. Zavislan, and L. Novotny, J. Opt. Soc. Am. B 21, 1210 (2004).
23.A. P. Bartko and R. M. Dickson, J. Phys. Chem. B 103, 3053 (1999).
24.A. P. Bartko and R. M. Dickson, J. Phys. Chem. B 103, 11237 (1999).
25.J. T. Fourkas, Opt. Lett. 26, 212 (2001).
26.A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, J. Cell Biol. 188, 415 (2010).
27.A. Gasecka, T. Han, C. Favard, B. R. Cho, and S. Brasselet, Biophys. J. 97, 2854 (2009).

Data & Media loading...


Article metrics loading...



We present a quantitative scheme for full-field polarization rotating fluorescence microscopy. A quarter-wave plate, in combination with a liquid crystal variable retarder, provides a tunable method to rotate polarization states of light prior to its being coupled into a fluorescence microscope. A calibration of the polarization properties of the incident light is performed in order to correct for elliptical polarization states. This calibration allows the response of the sample to linear polarization states of light to be recovered. Three known polarization states of light can be used to determine the average fluorescent dipole orientations in the presence of a spatially varying dc offset or background polarization-invariant fluorescence signal. To demonstrate the capabilities of this device, we measured a series of full-field fluorescence polarization images from fluorescent analogs incorporated in the lipid membrane of Burkitts lymphoma CA46 cells. The fluorescent lipid-like analogs used in this study are molecules that are labeled by either a DiI (1,1-Dioctadecyl 3,3,3,3-Tetramethylindocarbocyanine) fluorophore in its head group or a Bodipy (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) molecule in its acyl chain. A spatially varying contrast in the normalized amplitude was observed on the cell surface, where the orientation of the DiI molecules is tangential to the cell membrane. The internally labeled cellular structures showed zero response to changes in linear polarization, and the net linear polarization amplitude for these regions was zero. This instrument provides a low cost calibrated method that may be coupled to existing fluorescence microscopes to perform investigations of cellular processes that involve a change in molecular orientations.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd