1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Quantitative scheme for full-field polarization rotating fluorescence microscopy using a liquid crystal variable retarder
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/83/5/10.1063/1.4717682
1.
1.J. Chung, W. Jung, M. J. Hammer-Wilson, P. Wilder-Smith, and Z. Chen, Appl. Opt. 46, 3038 (2007).
http://dx.doi.org/10.1364/AO.46.003038
2.
2.V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, IEEE J. Sel. Top. Quantum Electron. 5, 1019 (1999).
http://dx.doi.org/10.1109/2944.796325
3.
3.I. H. Shin and D. Y. Kim, J. Biomed. Opt. 15, 016028 (2010).
http://dx.doi.org/10.1117/1.3327280
4.
4.A. N. Yaroslavsky, V. Neel, and R. R. Anderson, Opt. Lett. 29, 2010 (2004).
http://dx.doi.org/10.1364/OL.29.002010
5.
5.G. J. Schütz, G. Kada, V. P. Pastushenko, and H. Schindler, EMBO J. 19, 892 (2000).
http://dx.doi.org/10.1093/emboj/19.5.892
6.
6.M. G. Ismair, et al., Hepatology 49, 1673 (2009).
http://dx.doi.org/10.1002/hep.22807
7.
7.S. Charrin, F. Naour, O. Silvie, P. E. Milhiet, C. Boucheix, and E. Rubinstein, Biochem. J. 420, 133 (2009).
http://dx.doi.org/10.1042/BJ20082422
8.
8.A. K. Neumann, M. S. Itano, and K. Jacobson, F1000 Biol Rep. 2, 31 (2010).
9.
9.A. Kress, P. Ferrand, H. Rigneault, T. Trombik, H. T. He, D. Marguet, and S. Brasselet, Biophys. J. 20, 468 (2011).
10.
10.D. Axelrod, Biophys. J. 26, 557 (1979).
http://dx.doi.org/10.1016/S0006-3495(79)85271-6
11.
11.H. S. Muddana, R. R. Gullapalli, E. Manias, and P. J. Butler, Phys. Chem. Chem. Phys. 13, 1368 (2011).
http://dx.doi.org/10.1039/c0cp00430h
12.
12.P. W. Livanec and R. C. Dunn, Langmuir 28, 14066 (2008).
13.
13.W. C. Wimley and T. E. Thompson, Biochemistry 29, 1296 (1990).
http://dx.doi.org/10.1021/bi00457a027
14.
14.J. Korlach, P. Schwille, W. W. Webb, and G. W. Feigenson, Proc. Natl. Acad. Sci. U.S.A. 96, 8461 (1999).
http://dx.doi.org/10.1073/pnas.96.15.8461
15.
15.J. Hwang, L. K. Tamm, C. Bohm, T. S. Ramalingam, E. Betzig, and M. Edidin, Science 270, 610 (1995).
http://dx.doi.org/10.1126/science.270.5236.610
16.
16.J. Rieppo, J. Hallikainen, J. Jurvelin, I. Kiviranta, H. J. Helminen, and M. Hyttinen, Microsc. Res. Tech. 71, 279 (2008).
http://dx.doi.org/10.1002/jemt.20551
17.
17.See supplementary material at http://dx.doi.org/10.1063/1.4717682 for the experimental results for Bodipy-PC labeled CA46 cells.[Supplementary Material]
18.
18.J. Y. Lee, Ji Youn Lee, J. F. Lesoine, J. R. Krogmeier, H. Kang, M. Clarke, R. Chang, D. L. Sackett, R. Nossal, and J. C. Hwang, Proc. SPIE 7891, 78910Z1 (2011).
http://dx.doi.org/10.1117/12.875612
19.
19.T. C. Larason and J. M. Houston, NIST Special Pub. 250-41 (2008); http://www.nist.gov/calibrations/upload/sp250-41a.pdf.
20.
20.K. W. Hipps and G. A. Crosby, J. Phys. Chem. 83, 555 (1979).
http://dx.doi.org/10.1021/j100468a001
21.
21.L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.5251
22.
22.M. A. Lieb, J. M. Zavislan, and L. Novotny, J. Opt. Soc. Am. B 21, 1210 (2004).
http://dx.doi.org/10.1364/JOSAB.21.001210
23.
23.A. P. Bartko and R. M. Dickson, J. Phys. Chem. B 103, 3053 (1999).
http://dx.doi.org/10.1021/jp9846330
24.
24.A. P. Bartko and R. M. Dickson, J. Phys. Chem. B 103, 11237 (1999).
http://dx.doi.org/10.1021/jp993364q
25.
25.J. T. Fourkas, Opt. Lett. 26, 212 (2001).
http://dx.doi.org/10.1364/OL.26.000211
26.
26.A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, J. Cell Biol. 188, 415 (2010).
http://dx.doi.org/10.1083/jcb.200908010
27.
27.A. Gasecka, T. Han, C. Favard, B. R. Cho, and S. Brasselet, Biophys. J. 97, 2854 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.08.052
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/5/10.1063/1.4717682
Loading
/content/aip/journal/rsi/83/5/10.1063/1.4717682
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/83/5/10.1063/1.4717682
2012-05-16
2014-10-23

Abstract

We present a quantitative scheme for full-field polarization rotating fluorescence microscopy. A quarter-wave plate, in combination with a liquid crystal variable retarder, provides a tunable method to rotate polarization states of light prior to its being coupled into a fluorescence microscope. A calibration of the polarizationproperties of the incident light is performed in order to correct for elliptical polarization states. This calibration allows the response of the sample to linear polarization states of light to be recovered. Three known polarization states of light can be used to determine the average fluorescent dipole orientations in the presence of a spatially varying dc offset or background polarization-invariant fluorescence signal. To demonstrate the capabilities of this device, we measured a series of full-field fluorescencepolarizationimages from fluorescent analogs incorporated in the lipidmembrane of Burkitts lymphoma CA46 cells. The fluorescent lipid-like analogs used in this study are molecules that are labeled by either a DiI (1,1-Dioctadecyl 3,3,3,3-Tetramethylindocarbocyanine) fluorophore in its head group or a Bodipy (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) molecule in its acyl chain. A spatially varying contrast in the normalized amplitude was observed on the cell surface, where the orientation of the DiI molecules is tangential to the cell membrane. The internally labeled cellular structures showed zero response to changes in linear polarization, and the net linear polarization amplitude for these regions was zero. This instrument provides a low cost calibrated method that may be coupled to existing fluorescence microscopes to perform investigations of cellular processes that involve a change in molecular orientations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/83/5/1.4717682.html;jsessionid=1pw4ljatgein3.x-aip-live-03?itemId=/content/aip/journal/rsi/83/5/10.1063/1.4717682&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantitative scheme for full-field polarization rotating fluorescence microscopy using a liquid crystal variable retarder
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/5/10.1063/1.4717682
10.1063/1.4717682
SEARCH_EXPAND_ITEM