1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Invited Review Article: Combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/83/6/10.1063/1.4720102
1.
1. A. M. Minor, J. W. Morris, and E. A. Stach, Appl. Phys. Lett. 79, 1625 (2001).
http://dx.doi.org/10.1063/1.1400768
2.
2. B. Varghese, Y. Zhang, L. Dai, V. B. C. Tan, C. T. Lim, and C.-H. Sow, Nano Lett. 8, 3226 (2008).
http://dx.doi.org/10.1021/nl801555d
3.
3. S. W. Hell, Science 316, 1153 (2007).
http://dx.doi.org/10.1126/science.1137395
4.
4. G. Binning, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).
http://dx.doi.org/10.1103/PhysRevLett.49.57
5.
5. G. Binning, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.930
6.
6. B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, Phys. Rev. Lett. 92, 096101 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.096101
7.
7. K. F. Domke, D. Zhang, and B. Pettinger, J. Am. Chem. Soc. 128, 14721 (2006).
http://dx.doi.org/10.1021/ja065820b
8.
8. W. Zhang, B.-S. Yeo, T. Schmid, and R. Zenobi, J. Phys. Chem. C 111, 1733 (2007).
http://dx.doi.org/10.1021/jp064740r
9.
9. G. Picardi, Q. Nguyen, R. Ossikovski, and J. Schreiber, Appl. Spectrosc. 61, 1301 (2007).
http://dx.doi.org/10.1366/000370207783292109
10.
10. T. Yano, Y. Inouye, and S. Kawata, Nano Lett. 6, 1269 (2006).
http://dx.doi.org/10.1021/nl060108y
11.
11. N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, and S. Kawata, J. Raman Spectrosc. 38, 684 (2007).
http://dx.doi.org/10.1002/jrs.1728
12.
12. T. Schmid, A. Messmer, B.-S. Yeo, W. Zhang, and R. Zenobi, Anal. Bioanal. Chem. 391, 1907 (2008).
http://dx.doi.org/10.1007/s00216-008-2101-1
13.
13. B. W. Hoogenboom, P. L. T. M. Frederix, J. L. Yang, S. Martin, Y. Pellmont, M. Steinacher, S. Zäch, E. Langenbach, H.-J. Heimbeck, A. Engel, and H. J. Hug, Appl. Phys. Lett. 86, 074101 (2005).
http://dx.doi.org/10.1063/1.1866229
14.
14. H. I. Rasool, P. R. Wilkinson, A. Z. Stieg, and J. K. Gimzewski, Rev. Sci. Instrum. 81, 023703 (2010).
http://dx.doi.org/10.1063/1.3297901
15.
15. K. Karrai and R. D. Grober, Appl. Phys. Lett. 66, 1842 (1995).
http://dx.doi.org/10.1063/1.113340
16.
16. W. H. J. Rensen, N. F. van Hulst, and S. B. Kämmer, Appl. Phys. Lett. 77, 1557 (2000).
http://dx.doi.org/10.1063/1.1308058
17.
17. R. Toledo-Crow, P. C. Yang, Y. Chen, and M. Vaez-Iravani, Appl. Phys. Lett. 60, 2957 (1992).
http://dx.doi.org/10.1063/1.106801
18.
18. T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, J. Appl. Phys. 69, 668 (1991).
http://dx.doi.org/10.1063/1.347347
19.
19. T. Ichimura, S. Fujii, P. Verma, T. Yano, Y. Inouye, and S. Kawata, Phys. Rev. Lett. 102, 186101 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.186101
20.
20. R. W. Stark and W. M. Heckl, Rev. Sci. Instrum. 74, 5111 (2003).
http://dx.doi.org/10.1063/1.1626008
21.
21. S. Hembacher, F. J. Giessibl, and J. Mannhart, Science 305, 380 (2004).
http://dx.doi.org/10.1126/science.1099730
22.
22. J. Preiner, J. Tang, V. Pastushenko, and P. Hinterdorfer, Phys. Rev. Lett. 99, 046102 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.046102
23.
23. I. Palaci, S. Fedrigo, H. Brune, C. Klinke, M. Chen, and E. Riedo, Phys. Rev. Lett. 94, 175502 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.175502
24.
24. M. Lucas, X. Zhang, I. Palaci, C. Klinke, E. Tosatti, and E. Riedo, Nat. Mater. 8, 876 (2009).
http://dx.doi.org/10.1038/nmat2529
25.
25. N. A. Burnham, O. P. Behrend, F. Oulevey, G. Gremaud, P.-J. Gallo, D. Gourdon, E. Dupas, A. J. Kulik, H. M. Pollock, and G. A. D. Briggs, Nanotechnology 8, 67 (1997).
http://dx.doi.org/10.1088/0957-4484/8/2/004
26.
26. S. N. Magonov, V. Elings, and M.-H. Whangbo, Surf. Sci. 375, L385 (1997).
http://dx.doi.org/10.1016/S0039-6028(96)01591-9
27.
27. L. Tetard, A. Passian, and T. Thundat, Nat. Nanotechnol. 5, 105 (2010).
http://dx.doi.org/10.1038/nnano.2009.454
28.
28. Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Pérez, S. Morita, and Ó. Custance, Nature (London) 446, 64 (2007).
http://dx.doi.org/10.1038/nature05530
29.
29. B. J. Albers, T. C. Schwendemann, M. Z. Baykara, N. Pilet, M. Liebmann, E. I. Altman, and U. D. Schwarz, Nat. Nanotechnol. 4, 307 (2009).
http://dx.doi.org/10.1038/nnano.2009.57
30.
30. Y. Martin and H. K. Wickramasinghe, Appl. Phys. Lett. 50, 1455 (1987).
http://dx.doi.org/10.1063/1.97800
31.
31. M. R. Koblischka and U. Hartmann, Ultramicroscopy 97, 103 (2003).
http://dx.doi.org/10.1016/S0304-3991(03)00034-2
32.
32. O. Züger and D. Rugar, Appl. Phys. Lett. 63, 2496 (1993).
http://dx.doi.org/10.1063/1.110460
33.
33. C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar, Proc. Natl. Acad. Sci. U. S. A. 106, 1313 (2009).
http://dx.doi.org/10.1073/pnas.0812068106
34.
34. A. Majumdar, J. P. Carrejo, and J. Lai, Appl. Phys. Lett. 62, 2501 (1993).
http://dx.doi.org/10.1063/1.109335
35.
35. R. Meckenstock, Rev. Sci. Instrum. 79, 041101 (2008).
http://dx.doi.org/10.1063/1.2908445
36.
36. R. Berger, H.-J. Butt, M. B. Retschke, and S. A. L. Weber, Macromol. Rapid Commun. 30, 1167 (2009).
http://dx.doi.org/10.1002/marc.200900220
37.
37. A. J. Bard, F. R. F. Fan, J. Kwak, and O. Lev, Anal. Chem. 61, 132 (1989).
http://dx.doi.org/10.1021/ac00177a011
38.
38. Y. Martin, D. W. Abraham, and H. K. Wickramasinghe, Appl. Phys. Lett. 52, 1103 (1988).
http://dx.doi.org/10.1063/1.99224
39.
39. D. C. Coffey and D. S. Ginger, Nat. Mater. 5, 735 (2006).
http://dx.doi.org/10.1038/nmat1712
40.
40. M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991).
http://dx.doi.org/10.1063/1.105227
41.
41. Y. Cho, A. Kitahara, and T. Saeki, Rev. Sci. Instrum. 67, 2297 (1996).
http://dx.doi.org/10.1063/1.1146936
42.
42. V. Nalladega, S. Sathish, K. V. Jata, and M. P. Blodgett, Rev. Sci. Instrum. 79, 073705 (2008).
http://dx.doi.org/10.1063/1.2955470
43.
43. L. Wang, C. Kranz, and B. Mizaikoff, Anal. Chem. 82, 3132 (2010).
http://dx.doi.org/10.1021/ac902781h
44.
44. L. Wang, J. Kowalik, B. Mizaikoff, and C. Kranz, Anal. Chem. 82, 3139 (2010).
http://dx.doi.org/10.1021/ac9027802
45.
45. L. Gross, Nat. Chem. 3, 273 (2011).
http://dx.doi.org/10.1038/nchem.1008
46.
46. S. H. Pan, E. W. Hudson, and J. C. Davis, Appl. Phys. Lett. 73, 2992 (1998).
http://dx.doi.org/10.1063/1.122654
47.
47. A. Downes and M. E. Welland, Phys. Rev. Lett. 81, 1857 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.1857
48.
48. C. Weiss, C. Wagner, C. Kleimann, M. Rohlfing, F. S. Tautz, and R. Temirov, Phys. Rev. Lett. 105, 086103 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.086103
49.
49. C. Weiss, C. Wagner, R. Temirov, and F. S. Tautz, J. Am. Chem. Soc. 132, 11864 (2010).
http://dx.doi.org/10.1021/ja104332t
50.
50. B. J. Rodriguez, S. Jesse, A. P. Baddorf, and S. V. Kalinin, Phys. Rev. Lett. 96, 237602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.237602
51.
51. E. Bussmann and C. C. Williams, Rev. Sci. Instrum. 75, 422 (2004).
http://dx.doi.org/10.1063/1.1641161
52.
52. C. V. Raman and R. S. Krishnan, Nature (London) 121, 501 (1928).
http://dx.doi.org/10.1038/121501c0
53.
53. R. L. McCreery, Raman Spectroscopy for Chemical Analysis, Chemical Analysis Vol. 157 (Wiley Interscience, New York, 2000).
54.
54. A. V. Malkovskiy, V. I. Malkovsky, A. M. Kisliuk, C. A. Barrios, M. D. Foster, and A. P. Sokolov, J. Raman Spectrosc. 40, 1349 (2009).
http://dx.doi.org/10.1002/jrs.2388
55.
55. S. B. Cronin, A. K. Swan, M. S. Ünlü, B. B. Goldberg, M. S. Dresselhaus, and M. Tinkham, Phys. Rev. Lett. 93, 167401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.167401
56.
56. M. Lucas and R. J. Young, Compos. Sci. Technol. 67, 2135 (2007).
http://dx.doi.org/10.1016/j.compscitech.2006.11.001
57.
57. M. Lucas and R. J. Young, Phys. Rev. B 69, 085405 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.085405
58.
58. A. Ianoul, T. Coleman, and S. A. Asher, Anal. Chem. 74, 1458 (2002).
http://dx.doi.org/10.1021/ac010863q
59.
59. M. Lucas, B. A. Macdonald, G. L. Wagner, S. A. Joyce, and K. D. Rector, A C S Appl. Mater. Interfaces 2, 2198 (2010).
http://dx.doi.org/10.1021/am100371q
60.
60. C. Eliasson and P. Matousek, Anal. Chem. 79, 1696 (2007).
http://dx.doi.org/10.1021/ac062223z
61.
61. N. Welter, U. Schüssler, and W. Kiefer, J. Raman Spectrosc. 38, 113 (2007).
http://dx.doi.org/10.1002/jrs.1637
62.
62. D. L. Dickensheets, D. D. Wynn-Williams, H. G. M. Edwards, C. Schoen, C. Crowder, and E. M. Newton, J. Raman Spectrosc. 31, 633 (2000).
http://dx.doi.org/10.1002/1097-4555(200007)31:7<633::AID-JRS620>3.0.CO;2-R
63.
63. J.-X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
http://dx.doi.org/10.1021/jp035693v
64.
64. M. D. Duncan, J. Reintjes, and T. J. Manuccia, Opt. Lett. 7, 350 (1982).
http://dx.doi.org/10.1364/OL.7.000350
65.
65. A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4142
66.
66. T. Seeger, J. Jonuscheit, M. Schenk, and A. Leipertz, J. Mol. Struct. 661-662, 515 (2003).
http://dx.doi.org/10.1016/j.molstruc.2003.09.009
67.
67. G. Beadie, M. Bashkansky, J. Reintjes, and M. O. Scully, J. Mod. Opt. 51, 2627 (2004).
http://dx.doi.org/10.1080/09500340408231821
68.
68. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, Phys. Rev. Lett. 92, 220801 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.220801
69.
69. R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, and R. J. Saykally, J. Phys. Chem. B 106, 8489 (2002).
http://dx.doi.org/10.1021/jp020855t
70.
70. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, Proc. Natl. Acad. Sci. U. S. A. 102, 16807 (2005).
http://dx.doi.org/10.1073/pnas.0508282102
71.
71. S.-H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, J. Phys. Chem. B 110, 5196 (2006).
http://dx.doi.org/10.1021/jp057493k
72.
72. B.-C. Chen, J. Sung, and S.-H. Lim, J. Phys. Chem. B 114, 16871 (2010).
http://dx.doi.org/10.1021/jp104553s
73.
73. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, Opt. Lett. 31, 1872 (2006).
http://dx.doi.org/10.1364/OL.31.001872
74.
74. B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, Opt. Express 17, 12532 (2009).
http://dx.doi.org/10.1364/OE.17.012532
75.
75. M. Fleischmann, P. J. Hendra, A. J. McQuillan, R. L. Paul, and E. S. Reid, J. Raman Spectrosc. 4, 269 (1976).
http://dx.doi.org/10.1002/jrs.1250040308
76.
76. A. J. McQuillan, P. J. Hendra, and M. Fleischmann, J. Electroanal. Chem. 65, 933 (1975).
http://dx.doi.org/10.1016/S0022-0728(75)80173-2
77.
77. M. G. Albrecht and J. A. Creighton, J. Am. Chem. Soc. 99, 5215 (1977).
http://dx.doi.org/10.1021/ja00457a071
78.
78. D. L. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. 84, 1 (1977).
http://dx.doi.org/10.1016/S0022-0728(77)80224-6
79.
79. J. A. Creighton, C. G. Blatchford, and M. G. Albrecht, J. Chem. Soc., Faraday Trans. 2 75, 790 (1979).
http://dx.doi.org/10.1039/f29797500790
80.
80. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, J. Phys. Chem. C 111, 13794 (2007).
http://dx.doi.org/10.1021/jp0687908
81.
81. P. G. Cao, J. L. Yao, B. Ren, B. W. Mao, R. A. Gu, and Z. Q. Tian, Chem. Phys. Lett. 316, 1 (2000).
http://dx.doi.org/10.1016/S0009-2614(99)01207-5
82.
82. P. Kambhampati, O.-K. Song, and A. Campion, Phys. Stat. Sol. (a) 175, 233 (1999).
http://dx.doi.org/10.1002/(SICI)1521-396X(199909)175:1<233::AID-PSSA233>3.0.CO;2-Y
83.
83. J. R. Lombardi and R. L. Birke, Acc. Chem. Res. 42, 734 (2009).
http://dx.doi.org/10.1021/ar800249y
84.
84. A. Wokaun, J. P. Gordon, and P. F. Liao, Phys. Rev. Lett. 48, 957 (1982).
http://dx.doi.org/10.1103/PhysRevLett.48.957
85.
85. P. W. Barber, R. K. Chang, and H. Massoudi, Phys. Rev. Lett. 50, 997 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.997
86.
86. O. Sqalli, I. Utke, P. Hoffmann, and F. Marquis-Weible, J. Appl. Phys. 92, 1078 (2002).
http://dx.doi.org/10.1063/1.1487918
87.
87. B. N. J. Persson, K. Zhao, and Z. Zhang, Phys. Rev. Lett. 96, 207401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.207401
88.
88. C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B 107, 7426 (2003).
http://dx.doi.org/10.1021/jp027749b
89.
89. J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, J. Chem. Phys. 84, 4174 (1986).
http://dx.doi.org/10.1063/1.450037
90.
90. A. Otto, A. Bruckbauer, and Y. X. Chen, J. Mol. Struct. 661-662, 501 (2003).
http://dx.doi.org/10.1016/j.molstruc.2003.07.026
91.
91. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000).
http://dx.doi.org/10.1016/S0009-2614(99)01451-7
92.
92. H. Watanabe, Y. Ishida, N. Hayazawa, Y. Inouye, and S. Kawata, Phys. Rev. B 69, 155418 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.155418
93.
93. P. Verma, K. Yamada, H. Watanabe, Y. Inouye, and S. Kawata, Phys. Rev. B 73, 045416 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.045416
94.
94. K.-I. Yoshida, T. Itoh, H. Tamaru, V. Biju, M. Ishikawa, and Y. Ozaki, Phys. Rev. B 81, 115406 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.115406
95.
95. A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, and J. Z. Zhang, J. Phys. Chem. B 108, 19191 (2004).
http://dx.doi.org/10.1021/jp048430p
96.
96. P. Olk, J. Renger, T. Hărtling, M. T. Wenzel, and L. M. Eng, Nano Lett. 7, 1736 (2007).
http://dx.doi.org/10.1021/nl070727m
97.
97. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, Opt. Lett. 32, 1623 (2007).
http://dx.doi.org/10.1364/OL.32.001623
98.
98. R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, and V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008).
http://dx.doi.org/10.1063/1.2836271
99.
99. J. Wessel, J. Opt. Soc. Am. B 2, 1538 (1985).
http://dx.doi.org/10.1364/JOSAB.2.001538
100.
100. S. Nie and S. R. Emory, Science 275, 1102 (1997).
http://dx.doi.org/10.1126/science.275.5303.1102
101.
101. S. R. Emory and S. Nie, Anal. Chem. 69, 2631 (1997).
http://dx.doi.org/10.1021/ac9701647
102.
102. I. Khan, D. Cunningham, D. Graham, D. W. McComb, and W. E. Smith, J. Phys. Chem. B 109, 3454 (2005).
http://dx.doi.org/10.1021/jp045661n
103.
103. S. Basu, S. Pande, S. Jana, S. Bolisetty, and T. Pal, Langmuir 24, 5562 (2008).
http://dx.doi.org/10.1021/la8000784
104.
104. X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, and M. W. Chen, J. Phys. Chem. C 113, 10956 (2009).
http://dx.doi.org/10.1021/jp903137n
105.
105. C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, Appl. Phys. Lett. 96, 033104 (2010).
http://dx.doi.org/10.1063/1.3291109
106.
106. W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, J. Phys. Chem. C 113, 14672 (2009).
http://dx.doi.org/10.1021/jp9042304
107.
107. C. Tabor, D. Van Haute, and M. A. El-Sayed, ACS Nano 3, 3670 (2009).
http://dx.doi.org/10.1021/nn900779f
108.
108. X. Deng, G. B. Braun, S. Liu, P. F. Sciortino Jr., B. Koefer, T. Tombler, and M. Moskovits, Nano Lett. 10, 1780 (2010).
http://dx.doi.org/10.1021/nl1003587
109.
109. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002).
http://dx.doi.org/10.1063/1.1462610
110.
110. M. Rycenga, P. H. C. Camargo, W. Li, C. H. Moran, and Y. Xia, J. Phys. Chem. Lett. 1, 696 (2010).
http://dx.doi.org/10.1021/jz900286a
111.
111. A. Tcherniak, J. W. Ha, S. Dominguez-Medina, L. S. Slaughter, and S. Link, Nano Lett. 10, 1398 (2010).
http://dx.doi.org/10.1021/nl100199h
112.
112. P. N. Njoki, I-I. S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C.-J. Zhong, J. Phys. Chem. C 111, 14664 (2007).
http://dx.doi.org/10.1021/jp074902z
113.
113. J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, Nano Lett. 8, 1212 (2008).
http://dx.doi.org/10.1021/nl080271o
114.
114. H. Guo, F. Ruan, L. Lu, J. Hu, J. Pan, Z. Yang, and B. Ren, J. Phys. Chem. C 113, 10459 (2009).
http://dx.doi.org/10.1021/jp9019427
115.
115. L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, ACS Nano 4, 819 (2010).
http://dx.doi.org/10.1021/nn9017312
116.
116. T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, Nano Lett. 4, 2309 (2004).
http://dx.doi.org/10.1021/nl048694n
117.
117. D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, Nat. Mater. 9, 60 (2010).
http://dx.doi.org/10.1038/nmat2596
118.
118. M. Lucas, W. J. Mai, R. S. Yang, Z. L. Wang, and E. Riedo, Nano Lett. 7, 1314 (2007).
http://dx.doi.org/10.1021/nl070310g
119.
119. M. Lucas, Z. L. Wang, and E. Riedo, Appl. Phys. Lett. 95, 051904 (2009).
http://dx.doi.org/10.1063/1.3177065
120.
120. U. P. Agarwal, R. S. Reiner, and S. A. Ralph, Cellulose 17, 721 (2010).
http://dx.doi.org/10.1007/s10570-010-9420-z
121.
121. M. Tanaka and R. J. Young, Biomacromolecules 7, 2575 (2006).
http://dx.doi.org/10.1021/bm060326l
122.
122. I. Calizo, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Nano Lett. 7, 2645 (2007).
http://dx.doi.org/10.1021/nl071033g
123.
123. M. Lucas, Z. L. Wang, and E. Riedo, Phys. Rev. B 81, 045415 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.045415
124.
124. V. Biju, D. Pan, Y. A. Gorby, J. Fredrickson, J. McLean, D. Saffarini, and H. P. Lu, Langmuir 23, 1333 (2007).
http://dx.doi.org/10.1021/la061343z
125.
125. H. Ko, Y. Pikus, C. Jiang, A. Jauss, O. Hollricher, and V. V. Tsukruk, Appl. Phys. Lett. 85, 2598 (2004).
http://dx.doi.org/10.1063/1.1795981
126.
126. H.-J. Kim, D.-C. Kim, R. Kim, J. Kim, D.-H. Park, H.-S. Kim, J. Joo, and Y. D. Suh, J. Appl. Phys. 101, 053514 (2007).
http://dx.doi.org/10.1063/1.2437582
127.
127. U. Schmidt, S. Hild, W. Ibach, and O. Hollricher, Macromol. Symp. 230, 133 (2005).
http://dx.doi.org/10.1002/masy.200551152
128.
128. W. X. Sun and Z. X. Shen, Ultramicroscopy 94, 237 (2003).
http://dx.doi.org/10.1016/S0304-3991(02)00334-0
129.
129. M. S. Anderson and W. T. Pike, Rev. Sci. Instrum. 73, 1198 (2002).
http://dx.doi.org/10.1063/1.1445864
130.
130. A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, Phys. Rev. Lett. 90, 095503 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.095503
131.
131. L. Novotny, E. J. Sánchez, and X. S. Xie, Ultramicroscopy 71, 21 (1998).
http://dx.doi.org/10.1016/S0304-3991(97)00077-6
132.
132. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
http://dx.doi.org/10.1016/S0030-4018(99)00729-4
133.
133. M. Sackrow, C. Stanciu, M. A. Lieb, and A. J. Meixner, Chem. Phys. Chem. 9, 316 (2008).
http://dx.doi.org/10.1002/cphc.200700723
134.
134. M. A. Lieb and A. J. Meixner, Opt. Express 8, 458 (2001).
http://dx.doi.org/10.1364/OE.8.000458
135.
135. P. Anger, A. Feltz, T. Berghaus, and A. J. Meixner, J. Microsc. 209, 162 (2003).
http://dx.doi.org/10.1046/j.1365-2818.2003.01089.x
136.
136. J. Steidtner and B. Pettinger, Rev. Sci. Instrum. 78, 103104 (2007).
http://dx.doi.org/10.1063/1.2794227
137.
137. C. Stanciu, M. Sackrow, and A. J. Meixner, J. Microsc. 229, 247 (2008).
http://dx.doi.org/10.1111/j.1365-2818.2008.01894.x
138.
138. D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and A. J. Meixner, J. Raman Spectrosc. 40, 1371 (2009).
http://dx.doi.org/10.1002/jrs.2411
139.
139. D. Roy, J. Wang and M. E. Welland, Faraday Discuss. 132, 215 (2006).
http://dx.doi.org/10.1039/b506365e
140.
140. C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, Phys. Rev. B 73, 193406 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.193406
141.
141. S. Berweger and M. B. Raschke, Anal. Bioanal. Chem. 396, 115 (2010).
http://dx.doi.org/10.1007/s00216-009-3085-1
142.
142. D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, and J. F. Maguire, J. Raman Spectrosc. 36, 1068 (2005).
http://dx.doi.org/10.1002/jrs.1409
143.
143. Q. Nguyen, R. Ossikovski, and J. Schreiber, Opt. Commun. 274, 231 (2007).
http://dx.doi.org/10.1016/j.optcom.2007.01.057
144.
144. N. Lee, R. D. Hartschuh, D. Mehtani, A. Kisliuk, J. F. Maguire, M. Green, M. D. Foster, and A. P. Sokolov, J. Raman Spectrosc. 38, 789 (2007).
http://dx.doi.org/10.1002/jrs.1698
145.
145. N. Hayazawa, A. Tarun, Y. Inouye, and S. Kawata, J. Appl. Phys. 92, 6983 (2002).
http://dx.doi.org/10.1063/1.1519945
146.
146. M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, J. Phys. Chem. C 114, 7341 (2010).
http://dx.doi.org/10.1021/jp909252z
147.
147. Z. D. Schultz, S. J. Stranick, and I. W. Levin, Appl. Spectrosc. 62, 1173 (2008).
http://dx.doi.org/10.1366/000370208786401635
148.
148. A. Downes, D. Salter, and A. Elfick, J. Phys. Chem. B 110, 6692 (2006).
http://dx.doi.org/10.1021/jp060173w
149.
149. L. T. Nieman, G. M. Krampert, and R. E. Martinez, Rev. Sci. Instrum. 72, 1691 (2001).
http://dx.doi.org/10.1063/1.1347975
150.
150. J. Stadler, T. Schmid, and R. Zenobi, Nano Lett. 10, 4514 (2010).
http://dx.doi.org/10.1021/nl102423m
151.
151. R. C. Dunn, Chem. Rev. 99, 2891 (1999).
http://dx.doi.org/10.1021/cr980130e
152.
152. D. W. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
http://dx.doi.org/10.1063/1.94865
153.
153. A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, Ultramicroscopy 13, 227 (1984).
http://dx.doi.org/10.1016/0304-3991(84)90201-8
154.
154. T. Huser, L. Novotny, T. Lacoste, R. Eckert, and H. Heinzelmann, J. Opt. Soc. Am. A 16, 141 (1999).
http://dx.doi.org/10.1364/JOSAA.16.000141
155.
155. E. Betzig and J. K. Trautman, Science 257, 189 (1992).
http://dx.doi.org/10.1126/science.257.5067.189
156.
156. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, J. Appl. Phys. 81, 2492 (1997).
http://dx.doi.org/10.1063/1.363956
157.
157. A. Mai, L. Zhu, M. Hecker, J. Rinderknecht, C. Georgi, Y. Ritz, and E. Zschech, J. Raman Spectrosc. 39, 435 (2008).
http://dx.doi.org/10.1002/jrs.1852
158.
158. Y. Jiang, A. Wang, B. Ren, and Z.-Q. Tian, Langmuir 24, 12054 (2008).
http://dx.doi.org/10.1021/la801376p
159.
159. L. A. Gheber, J. Hwang, and M. Edidin, Appl. Opt. 37, 3574 (1998).
http://dx.doi.org/10.1364/AO.37.003574
160.
160. B.-S. Yeo, S. Mädler, T. Schmid, W. Zhang, and R. Zenobi, J. Phys. Chem. C 112, 4867 (2008).
http://dx.doi.org/10.1021/jp709799m
161.
161. J. Prikulis, K. V. G. K. Murty, H. Olin, and M. Käll, J. Microsc. 210, 269 (2003).
http://dx.doi.org/10.1046/j.1365-2818.2003.01142.x
162.
162. E. Betzig, P. L. Finn, and J. S. Weiner, Appl. Phys. Lett. 60, 2484 (1992).
http://dx.doi.org/10.1063/1.106940
163.
163. H. A. Bethe, Phys. Rev. 66, 163 (1944).
http://dx.doi.org/10.1103/PhysRev.66.163
164.
164. L. Novotny and C. Hafner, Phys. Rev. E 50, 4094 (1994).
http://dx.doi.org/10.1103/PhysRevE.50.4094
165.
165. F. Zenhausern, M. P. O'Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994).
http://dx.doi.org/10.1063/1.112931
166.
166. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, Science 269, 1083 (1995).
http://dx.doi.org/10.1126/science.269.5227.1083
167.
167. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, J. Chem. Phys. 112, 7761 (2000).
http://dx.doi.org/10.1063/1.481382
168.
168. J. Kim and K.-B. Song, Micron 38, 409 (2007).
http://dx.doi.org/10.1016/j.micron.2006.06.010
169.
169. A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, Nat. Biotechnol. 21, 1378 (2003).
http://dx.doi.org/10.1038/nbt898
170.
170. A. Rasmussen and V. Deckert, Anal. Bioanal. Chem. 381, 165 (2005).
http://dx.doi.org/10.1007/s00216-004-2896-3
171.
171. N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, J. Chem. Phys. 117, 1296 (2002).
http://dx.doi.org/10.1063/1.1485731
172.
172. E. Bailo and V. Deckert, Chem. Soc. Rev. 37, 921 (2008).
http://dx.doi.org/10.1039/b705967c
173.
173. K. L. A. Chan and S. G. Kazarian, Nanotechnology 22, 175701 (2011).
http://dx.doi.org/10.1088/0957-4484/22/17/175701
174.
174. N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, Opt. Commun. 183, 333 (2000).
http://dx.doi.org/10.1016/S0030-4018(00)00894-4
175.
175. M. S. Anderson, Appl. Phys. Lett. 76, 3130 (2000).
http://dx.doi.org/10.1063/1.126546
176.
176. D. S. Bulgarevich and M. Futamata, Appl. Spectrosc. 58, 757 (2004).
http://dx.doi.org/10.1366/0003702041389292
177.
177. B. Pettinger, G. Picardi, R. Schuster, and G. Ertl, Single Mol. 3, 285 (2002).
http://dx.doi.org/10.1002/1438-5171(200211)3:5/6<285::AID-SIMO285>3.0.CO;2-X
178.
178. C. Vannier, B.-S. Yeo, J. Melanson, and R. Zenobi, Rev. Sci. Instrum. 77, 023104 (2006).
http://dx.doi.org/10.1063/1.2162449
179.
179. T.-A. Yano, T. Ichimura, A. Taguchi, N. Hayazawa, P. Verma, Y. Inouye, and S. Kawata, Appl. Phys. Lett. 91, 121101 (2007).
http://dx.doi.org/10.1063/1.2785115
180.
180. L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.645
181.
181. E. J. Sánchez, L. Novotny, and X. S. Xie, Phys. Rev. Lett. 82, 4014 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4014
182.
182. D. Richards, R. G. Milner, F. Huang, and F. Festy, J. Raman Spectrosc. 34, 663 (2003).
http://dx.doi.org/10.1002/jrs.1046
183.
183. B.-S. Yeo, T. Schmid, W. Zhang, and R. Zenobi, Anal. Bioanal. Chem. 387, 2655 (2007).
http://dx.doi.org/10.1007/s00216-007-1165-7
184.
184. B. Pettinger, K. F. Domke, D. Zhang, R. Schuster, and G. Ertl, Phys. Rev. B 76, 113409 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.113409
185.
185. E. Bailo and V. Deckert, Angew. Chem. Int. Ed. 47, 1658 (2008).
http://dx.doi.org/10.1002/anie.200704054
186.
186. W. X. Sun and Z. X. Shen, J. Raman Spectrosc. 34, 668 (2003).
http://dx.doi.org/10.1002/jrs.1063
187.
187. D. Roy, J. Wang, and C. Williams, J. Appl. Phys. 105, 013530 (2009).
http://dx.doi.org/10.1063/1.3056155
188.
188. M. Micic, N. Klymyshyn, Y. D. Suh, and H. P. Lu, J. Phys. Chem. B 107, 1574 (2003).
http://dx.doi.org/10.1021/jp022060s
189.
189. Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe, J. Appl. Phys. 89, 5774 (2001).
http://dx.doi.org/10.1063/1.1354655
190.
190. J. T. Krug II, E. J. Sánchez, and X. S. Xie, J. Chem. Phys. 116, 10895 (2002).
http://dx.doi.org/10.1063/1.1479723
191.
191. A. L. Demming, F. Festy, and D. Richards, J. Chem. Phys. 122, 184716 (2005).
http://dx.doi.org/10.1063/1.1896356
192.
192. A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, and J.-K. Wang, Appl. Phys. Lett. 88, 104101 (2006).
http://dx.doi.org/10.1063/1.2183362
193.
193. Z. Yang, J. Aizpurua, and H. Xu, J. Raman Spectrosc. 40, 1343 (2009).
http://dx.doi.org/10.1002/jrs.2429
194.
194. M. Sukharev and T. Seideman, J. Phys. Chem. A 113, 7508 (2009).
http://dx.doi.org/10.1021/jp900877m
195.
195. J. A. Porto, P. Johansson, S. P. Apell, and T. López-Ríos, Phys. Rev. B 67, 085409 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.085409
196.
196. P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, Phys. Rev. B 70, 075402 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.075402
197.
197. P. I. Geshev, U. Fischer, and H. Fuchs, Phys. Rev. B 81, 125441 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.125441
198.
198. L. Novotny, D. W. Pohl, and B. Hecht, Ultramicroscopy 61, 1 (1995).
http://dx.doi.org/10.1016/0304-3991(95)00095-X
199.
199. N. Behr and M. B. Raschke, J. Phys. Chem. C 112, 3766 (2008).
http://dx.doi.org/10.1021/jp7098009
200.
200. T. Grosges, A. Vial, and D. Barchiesi, Opt. Express 13, 8483 (2005).
http://dx.doi.org/10.1364/OPEX.13.008483
201.
201. M. B. Raschke and C. Lienau, Appl. Phys. Lett. 83, 5089 (2003).
http://dx.doi.org/10.1063/1.1632023
202.
202. A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobia, and S. Kawata, J. Raman Spectrosc. 40, 1324 (2009).
http://dx.doi.org/10.1002/jrs.2287
203.
203. Z. Ma, J. M. Gerton, L. A. Wade, and S. R. Quake, Phys. Rev. Lett. 97, 260801 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.260801
204.
204. F. Festy, A. Demming, and D. Richards, Ultramicroscopy 100, 437 (2004).
http://dx.doi.org/10.1016/j.ultramic.2003.11.019
205.
205. W. Zhang, X. Cui, B.-S. Yeo, T. Schmid, C. Hafner, and R. Zenobi, Nano Lett. 7, 1401 (2007).
http://dx.doi.org/10.1021/nl070616n
206.
206. N. Anderson, A. Hartschuh, S. Cronin, and L. Novotny, J. Am. Chem. Soc. 127, 2533 (2005).
http://dx.doi.org/10.1021/ja045190i
207.
207. J. Steidtner and B. Pettinger, Phys. Rev. Lett. 100, 236101 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.236101
208.
208. T.-A. Yano, P. Verma, Y. Saito, T. Ichimura, and S. Kawata, Nat. Photonics 3, 473 (2009).
http://dx.doi.org/10.1038/nphoton.2009.74
209.
209. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, Nat. Nanotechnol. 5, 67 (2010).
http://dx.doi.org/10.1038/nnano.2009.348
210.
210. C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, Phys. Rev. B 75, 236402 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.236402
211.
211. K. F. Domke, D. Zhang, and B. Pettinger, J. Phys. Chem. C 111, 8611 (2007).
http://dx.doi.org/10.1021/jp071519l
212.
212. T. Ichimura, H. Watanabe, Y. Morita, P. Verma, S. Kawata, and Y. Inouye, J. Phys. Chem. C 111, 9460 (2007).
http://dx.doi.org/10.1021/jp070420b
213.
213. N. Anderson, P. Anger, A. Hartschuh, and L. Novotny, Nano Lett. 6, 744 (2006).
http://dx.doi.org/10.1021/nl0600023
214.
214. L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, J. Appl. Phys. 101, 104305 (2007).
http://dx.doi.org/10.1063/1.2732435
215.
215. B. Ren, G. Picardi, B. Pettinger, R. Schuster, and G. Ertl, Angew. Chem. Int. Ed. 44, 139 (2005).
http://dx.doi.org/10.1002/anie.200460656
216.
216. T. Schmid, B.-S. Yeo, G. Leong, J. Stadler, and R. Zenobi, J. Raman Spectrosc. 40, 1392 (2009).
http://dx.doi.org/10.1002/jrs.2387
217.
217. S. Berweger, C. C. Neacsu, Y. Mao, H. Zhou, S. S. Wong, and M. B. Raschke, Nat. Nanotechnol. 4, 496 (2009).
http://dx.doi.org/10.1038/nnano.2009.190
218.
218. A. Weigel and N. P. Ernsting, J. Phys. Chem. B 114, 7879 (2010).
http://dx.doi.org/10.1021/jp100181z
219.
219. P. G. Gucciardi, M. Lopes, R. Déturche, C. Julien, D. Barchiesi, and M. Lamy de la Chapelle, Nanotechnology 19, 215702 (2008).
http://dx.doi.org/10.1088/0957-4484/19/21/215702
220.
220. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.5251
221.
221. S. Quabis, R. Dorn, and G. Leuchs, Appl. Phys. B 81, 597 (2005).
http://dx.doi.org/10.1007/s00340-005-1887-1
222.
222. N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
http://dx.doi.org/10.1063/1.1839646
223.
223. V. Poborchii, T. Tada, and T. Kanayama, Jpn. J. Appl. Phys. 44, L202 (2005).
http://dx.doi.org/10.1143/JJAP.44.L202
224.
224. R. Ossikovski, Q. Nguyen, and G. Picardi, Phys. Rev. B 75, 045412 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.045412
225.
225. M. Motohashi, N. Hayazawa, A. Tarun, and S. Kawata, J. Appl. Phys.103, 034309 (2008).
http://dx.doi.org/10.1063/1.2837837
226.
226. K. J. Yi, X. N. He, Y. S. Zhou, W. Xiong, and Y. F. Lu, Rev. Sci. Instrum. 79, 073706 (2008).
http://dx.doi.org/10.1063/1.2956977
227.
227. B. Ren, G. Picardi, and B. Pettinger, Rev. Sci. Instrum. 75, 837 (2004).
http://dx.doi.org/10.1063/1.1688442
228.
228. X. Wang, Z. Liu, M.-D. Zhuang, H.-M. Zhang, X. Wang, Z.-X. Xie, D.-Y. Wu, B. Ren, and Z.-Q. Tian, Appl. Phys. Lett. 91, 101105 (2007).
http://dx.doi.org/10.1063/1.2776860
229.
229. K. Dickmann, F. Demming, and J. Jersch, Rev. Sci. Instrum. 67, 845 (1996).
http://dx.doi.org/10.1063/1.1146655
230.
230. A. Rasmussen and V. Deckert, J. Raman Spectrosc. 37, 311 (2006).
http://dx.doi.org/10.1002/jrs.1480
231.
231. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.017402
232.
232. J. J. Wang, Y. Saito, D. N. Batchelder, J. Kirkham, C. Robinson, and D. A. Smith, Appl. Phys. Lett. 86, 263111 (2005).
http://dx.doi.org/10.1063/1.1978983
233.
233. R. F. Aroca, R. A. Alvarez-Puebla, N. Pieczonka, S. Sanchez-Cortez, and J. V. Garcia-Ramos, Adv. Colloid Interface Sci. 116, 45 (2005).
http://dx.doi.org/10.1016/j.cis.2005.04.007
234.
234. I. Barsegova, A. Lewis, A. Khatchatouriants, A. Manevitch, A. Ignatov, N. Axelrod, and C. Sukenik, Appl. Phys. Lett. 81, 3461 (2002).
http://dx.doi.org/10.1063/1.1507618
235.
235. Y. Gan, Rev. Sci. Instrum. 78, 081101 (2007).
http://dx.doi.org/10.1063/1.2754076
236.
236. R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, Appl. Phys. Lett. 75, 160 (1999).
http://dx.doi.org/10.1063/1.124305
237.
237. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.4370
238.
238. C. A. Barrios, A. V. Malkovskiy, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, J. Phys. Chem. C 113, 8158 (2009).
http://dx.doi.org/10.1021/jp8098126
239.
239. B.-S. Yeo, W. Zhang, C. Vannier, and R. Zenobi, Appl. Spectrosc. 60, 1142 (2006).
http://dx.doi.org/10.1366/000370206778664662
240.
240. S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, J. Phys. Chem. Lett. 1, 3427 (2010).
http://dx.doi.org/10.1021/jz101289z
241.
241. E. C. Le Ru, M. Meyer, and P. G. Etchegoin, J. Phys. Chem. B 110, 1944 (2006).
http://dx.doi.org/10.1021/jp054732v
242.
242. J. E. Bohn, E. C. Le Ru, and P. G. Etchegoin, J. Phys. Chem. C 114, 7330 (2010).
http://dx.doi.org/10.1021/jp908990v
243.
243. J. C. Tsang, J. E. Demuth, P. N. Sanda, and J. R. Kirtley, Chem. Phys. Lett. 76, 54 (1980).
http://dx.doi.org/10.1016/0009-2614(80)80603-8
244.
244. N. P. W. Pieczonka and R. F. Aroca, Chem. Phys. Chem. 6, 2473 (2005).
http://dx.doi.org/10.1002/cphc.200500112
245.
245. W. Zhang, T. Schmid, B.-S. Yeo, and R. Zenobi, J. Phys. Chem. C 112, 2104 (2008).
http://dx.doi.org/10.1021/jp077457g
246.
246. A. Downes, D. Salter, and A. Elfick, Opt. Express 14, 5216 (2006).
http://dx.doi.org/10.1364/OE.14.005216
247.
247. G. Baffou, R. Quidant, and F. J. García de Abajo, ACS Nano 4, 709 (2010).
http://dx.doi.org/10.1021/nn901144d
248.
248. T. L. Haslett, L. Tay, and M. Moskovits, J. Chem. Phys. 113, 1641 (2000).
http://dx.doi.org/10.1063/1.481952
249.
249. K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. 76, 2444 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.2444
250.
250. E. C. Le Ru and P. G. Etchegoin, Faraday Discuss. 132, 63 (2006).
http://dx.doi.org/10.1039/b505343a
251.
251. R. C. Maher, L. F. Cohen, E. C. Le Ru, and P. G. Etchegoin, Faraday Discuss. 132, 77 (2006).
http://dx.doi.org/10.1039/b510413k
252.
252. P. Verma, Y. Inouye, and S. Kawata, Topics Appl. Phys. 103, 241 (2006).
http://dx.doi.org/10.1007/3-540-33567-6
253.
253. A. P. D. Elfick, A. R. Downes, and R. Mouras, Anal. Bioanal. Chem. 396, 45 (2010).
http://dx.doi.org/10.1007/s00216-009-3223-9
254.
254. J. M. Yarbrough, M. E Himmel, and S.-Y. Ding, Biotechnol Biofuels. 2, 17 (2009).
http://dx.doi.org/10.1186/1754-6834-2-17
255.
255. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, Phys. Rev. Lett. 93, 200801 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.200801
256.
256. J. Madl, S. Rhode, H. Stangl, H. Stockinger, P. Hinterdorfer, G. J. Schütz, and G. Kada, Ultramicroscopy 106, 645 (2006).
http://dx.doi.org/10.1016/j.ultramic.2005.12.020
257.
257. T. Schmid, J. Burkhard, B.-S. Yeo, W. Zhang, and R. Zenobi, Anal. Bioanal. Chem. 391, 1899 (2008).
http://dx.doi.org/10.1007/s00216-008-2100-2
258.
258. Z. Deng, T. Zink, H.-Y. Chen, D. Walters, F.-T. Liu, and G.-Y. Liu, Biophys. J. 96, 1629 (2009).
http://dx.doi.org/10.1016/j.bpj.2008.11.015
259.
259. A. Kramer, W. Trabesinger, B. Hecht, and U. P. Wild, Appl. Phys. Lett. 80, 1652 (2002).
http://dx.doi.org/10.1063/1.1453479
260.
260. P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett. 96, 113002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.113002
261.
261. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.017402
262.
262. F. M. Huang, F. Festy, and D. Richards, Appl. Phys. Lett. 87, 183101 (2005).
http://dx.doi.org/10.1063/1.2115073
263.
263. A. Trache and G. A. Meininger, J. Biomed. Opt. 10, 064023 (2005).
http://dx.doi.org/10.1117/1.2146963
264.
264. R. L. Stiles, K. A. Willets, L. J. Sherry, J. M. Roden, and R. P. Van Duyne, J. Phys. Chem. C 112, 11696 (2008).
http://dx.doi.org/10.1021/jp802066b
265.
265. H. Gumpp, S. W. Stahl, M. Strackharn, E. M. Puchner, and H. E. Gaub, Rev. Sci. Instrum. 80, 063704 (2009).
http://dx.doi.org/10.1063/1.3148224
266.
266. M. Y. Berezin and S. Achilefu, Chem. Rev. 110, 2641 (2010).
http://dx.doi.org/10.1021/cr900343z
267.
267. D. Hu, M. Micic, N. Klymyshyn, Y. D. Suh, and H. P. Lu, Rev. Sci. Instrum. 74, 3347 (2003).
http://dx.doi.org/10.1063/1.1581359
268.
268. E. Yoskovitz, G. Menagen, A. Sitt, E. Lachman, and U. Banin, Nano Lett. 10, 3068 (2010).
http://dx.doi.org/10.1021/nl101614s
269.
269. N. Hayazawa, K. Furusawa, A. Taguchi, S. Kawata, and H. Abe, Appl. Phys. Lett. 94, 193112 (2009).
http://dx.doi.org/10.1063/1.3138132
270.
270. N. Hayazawa, K. Furusawa, A. Taguchi, and S. Kawata, J. Appl. Phys.106, 113103 (2009).
http://dx.doi.org/10.1063/1.3259378
271.
271. S. K. Sekatskii and V. S. Letokhov, Appl. Phys. B 63, 525 (1996).
http://dx.doi.org/10.1007/s003400050119
272.
272. S. A. Vickery and R. C. Dunn, J. Microsc. 202, 408 (2001).
http://dx.doi.org/10.1046/j.1365-2818.2001.00857.x
273.
273. B. Knoll and F. Keilmann, Nature (London) 399, 134 (1999).
http://dx.doi.org/10.1038/20154
274.
274. A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, Phys. Rev. Lett. 97, 060801 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.060801
275.
275. A. Hammiche, H. M. Pollock, M. Reading, M. Claybourn, P. H. Turner, and K. Jewkes, Appl. Spectrosc. 53, 810 (1999).
http://dx.doi.org/10.1366/0003702991947379
276.
276. M. S. Anderson, Appl. Spectrosc. 54, 349 (2000).
http://dx.doi.org/10.1366/0003702001949618
277.
277. A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, Ultramicroscopy 107, 1194 (2007).
http://dx.doi.org/10.1016/j.ultramic.2007.01.018
278.
278. A. C. Jones, S. Berweger, J. Wei, D. Cobden, and M. B. Raschke, Nano Lett. 10, 1574 (2010).
http://dx.doi.org/10.1021/nl903765h
279.
279. N. Ocelic, A. Huber, and R. Hillenbrand, Appl. Phys. Lett. 89, 101124 (2006).
http://dx.doi.org/10.1063/1.2348781
280.
280. M. Brucherseifer, C. Kranz, and B. Mizaikoff, Anal. Chem. 79, 8803 (2007).
http://dx.doi.org/10.1021/ac071004q
281.
281. G. Scott, S. Ashtekar, J. Lyding, and M. Gruebele, Nano Lett. 10, 4897 (2010).
http://dx.doi.org/10.1021/nl102854s
282.
282. I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, Appl. Phys. Lett. 97, 073121 (2010).
http://dx.doi.org/10.1063/1.3480608
283.
283. A. V. Zayats and V. Sandoghdar, J. Microsc. 202, 94 (2001).
http://dx.doi.org/10.1046/j.1365-2818.2001.00810.x
284.
284. I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, Phys. Rev. B 56, 9290 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.9290
285.
285. I. I. Smolyaninov, H. Y. Liang, C. H. Lee, and C. C. Davis, J. Appl. Phys.89, 206 (2001).
http://dx.doi.org/10.1063/1.1331342
286.
286. S. Takahashi and A. V. Zayats, Appl. Phys. Lett. 80, 3479 (2002).
http://dx.doi.org/10.1063/1.1478780
287.
287. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Phys. Rev. Lett. 90, 013903 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.013903
288.
288. A. V. Zayats, T. Kalkbrenner, V. Sandoghdar, and J. Mlynek, Phys. Rev. B 61, 4545 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.4545
289.
289. K. A. Meyer, K. C. Ng, Z. Gu, Z. Pan, W. B. Whitten, and R. W. Shaw, Appl. Spectrosc. 64, 1 (2010).
http://dx.doi.org/10.1366/000370210790572070
290.
290. A. V. Zayats and I. I. Smolyaninov, Phil. Trans. R. Soc. Lond. A 362, 843 (2004).
http://dx.doi.org/10.1098/rsta.2003.1350
291.
291. A. Hartschuh, H. Qian, C. Georgi, M. Böhmler, and L. Novotny, Anal. Bioanal. Chem. 394, 1787 (2009).
http://dx.doi.org/10.1007/s00216-009-2827-4
292.
292. N. Anderson, A. Hartschuh, and L. Novotny, Nano Lett. 7, 577 (2007).
http://dx.doi.org/10.1021/nl0622496
293.
293. Y. Saito, P. Verma, K. Masui, Y. Inouye, and S. Kawata, J. Raman Spectrosc. 40, 1434 (2009).
http://dx.doi.org/10.1002/jrs.2366
294.
294. N. Marquestaut, D. Talaga, L. Servant, P. Yang, P. Pauzauskie, and F. Lagugné-Labarthet, J. Raman Spectrosc. 40, 1441 (2009).
http://dx.doi.org/10.1002/jrs.2404
295.
295. D. Pan, N. Klymyshyn, D. Hu, and H. P. Lu, Appl. Phys. Lett. 88, 093121 (2006).
http://dx.doi.org/10.1063/1.2176865
296.
296. K. F. Domke and B. Pettinger, Chem. Phys. Chem. 10, 1794 (2009).
http://dx.doi.org/10.1002/cphc.200900182
297.
297. T. Deckert-Gaudig, E. Rauls, and V. Deckert, J. Phys. Chem. C 114, 7412 (2010).
http://dx.doi.org/10.1021/jp9098045
298.
298. K. F. Domke, D. Zhang, and B. Pettinger, J. Am. Chem. Soc. 129, 6708 (2007).
http://dx.doi.org/10.1021/ja071107q
299.
299. M. Lucas, W. J. Mai, R. S. Yang, Z. L. Wang, and E. Riedo, Philos. Mag. 87, 2135 (2007).
http://dx.doi.org/10.1080/14786430701225799
300.
300. D. Passeri, A. Bettucci, A. Biagioni, M. Rossi, A. Alippi, M. Lucci, I. Davoli, and S. Berezina, Rev. Sci. Instrum. 79, 066105 (2008).
http://dx.doi.org/10.1063/1.2949387
301.
301. M. Lucas, K. Gall, and E. Riedo, J. Appl. Phys. 104, 113515 (2008).
http://dx.doi.org/10.1063/1.3039511
302.
302. B. Bhushan and X. Ling, Phys. Rev. B 78, 045429 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.045429
303.
303. M. Lucas, A. M. Leach, M. T. McDowell, S. E. Hunyadi, K. Gall, C. J. Murphy, and E. Riedo, Phys. Rev. B 77, 245420 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.245420
304.
304. O. Sahin, S. Magonov, C. Su, C. F. Quate, and O. Solgaard, Nat. Nanotechnol. 2, 507 (2007).
http://dx.doi.org/10.1038/nnano.2007.226
305.
305. Z. Deng, V. Lulevich, F.-T. Liu, and G.-Y. Liu, J. Phys. Chem. B 114, 5971 (2010).
http://dx.doi.org/10.1021/jp9114546
306.
306. V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, Langmuir 22, 8151 (2006).
http://dx.doi.org/10.1021/la060561p
307.
307. A. Trache, J. P. Trzeciakowski, L. Gardiner, Z. Sun, M. Muthuchamy, M. Guo, S. Y. Yuan, and G. A. Meininger, Biophys. J. 89, 2888 (2005).
http://dx.doi.org/10.1529/biophysj.104.057026
308.
308. A. R. Bizzarri and S. Cannistraro, J. Phys. Chem. B 113, 16449 (2009).
http://dx.doi.org/10.1021/jp902421r
309.
309. X. Xu, J. Melcher, and A. Raman, Phys. Rev. B 81, 035407 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.035407
310.
310. R. García, R. Magerle, and R. Perez, Nat. Mater. 6, 405 (2007).
http://dx.doi.org/10.1038/nmat1925
311.
311. H. Hölscher, Appl. Phys. Lett. 89, 123109 (2006).
http://dx.doi.org/10.1063/1.2355437
312.
312. N. McLoughlin, S. L. Lee, and G. Hähner, Appl. Phys. Lett. 89, 184106 (2006).
http://dx.doi.org/10.1063/1.2374867
313.
313. R. Böhme, M. Richter, D. Cialla, P. Rösch, V. Deckert, and J. Popp, J. Raman Spectrosc. 40, 1452 (2009).
http://dx.doi.org/10.1002/jrs.2433
314.
314. U. P. Agarwal, Planta 224, 1141 (2006).
http://dx.doi.org/10.1007/s00425-006-0295-z
315.
315. S. Scolaro, S. Sobanska, J. Barbillat, J. Laureyns, F. Louis, D. Petitprez, and C. Brémard, J. Raman Spectrosc. 40, 157 (2009).
http://dx.doi.org/10.1002/jrs.2098
316.
316. B.-S. Yeo, E. Amstad, T. Schmid, J. Stadler, and R. Zenobi, Small 5, 952 (2009).
http://dx.doi.org/10.1002/smll.200801101
317.
317. E. Dague, D. Alsteens, J.-P. Latgé, C. Verbelen, D. Raze, A. R. Baulard, and Y. F. Dufrêne, Nano Lett. 7, 3026 (2007).
http://dx.doi.org/10.1021/nl071476k
318.
318. F. Kienberger, A. Ebner, H. J. Gruber, and P. Hinterdorfer, Acc. Chem. Res. 39, 29 (2006).
http://dx.doi.org/10.1021/ar050084m
319.
319. T. Taubner, R. Hillenbrand, and F. Keilmann, Appl. Phys. Lett. 85, 5064 (2004).
http://dx.doi.org/10.1063/1.1827334
320.
320. M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, Nano Lett. 6, 1307 (2006).
http://dx.doi.org/10.1021/nl0610836
321.
321. D. J. Müller and Y. F. Dufrêne, Nat. Nanotechnol. 3, 261 (2008).
http://dx.doi.org/10.1038/nnano.2008.100
322.
322. U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt, and J. Popp, Chem. Phys. Chem. 8, 124 (2007).
http://dx.doi.org/10.1002/cphc.200600507
323.
323. D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Möller, D. Naumann, V. Deckert, and J. Poppa, J. Raman Spectrosc. 40, 240 (2009).
http://dx.doi.org/10.1002/jrs.2123
324.
324. X. Chen, A. Kis, A. Zettl, and C. R. Bertozzi, Proc. Natl. Acad. Sci. U. S. A. 104, 8218 (2007).
http://dx.doi.org/10.1073/pnas.0700567104
325.
325. A. Meister, M. Gabi, P. Behr, P. Studer, J. Vörös, P. Niedermann, J. Bitterli, J. Polesel-Maris, M. Liley, H. Heinzelmann, and T. Zambelli, Nano Lett. 9, 2501 (2009).
http://dx.doi.org/10.1021/nl901384x
326.
326. G. Compagnini, F. Giannazzo, S. Sonde, V. Raineri, and E. Rimini, Carbon 47, 3201 (2009).
http://dx.doi.org/10.1016/j.carbon.2009.07.033
327.
327. M. R. Joya, P. S. Pizani, R. G. Jasinevicius, R. E. Samad, W. de Rossi, and N. D. Vieira Jr., J. Appl. Phys. 100, 053518 (2006).
http://dx.doi.org/10.1063/1.2345052
328.
328. H. Zhong, J. Wang, X. Chen, Z. Li, W. Xu, and W. Lu, J. Appl. Phys. 99, 103905 (2006).
http://dx.doi.org/10.1063/1.2197262
329.
329. S. W. Lee, G.-H. Jeong, and E. E. B. Campbell, Nano Lett. 7, 2590 (2007).
http://dx.doi.org/10.1021/nl070877x
330.
330. C. Georgi, M. Hecker, and E. Zschech, J. Appl. Phys. 101, 123104 (2007).
http://dx.doi.org/10.1063/1.2743882
331.
331. R. Ossikovski, Q. Nguyen, G. Picardi, and J. Schreiber, J. Appl. Phys. 103, 093525 (2008).
http://dx.doi.org/10.1063/1.2917314
332.
332. Z. Wei, D. B. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and Elisa Riedo, Science 328, 1373 (2010).
http://dx.doi.org/10.1126/science.1188119
333.
333. D. C. Coffey, O. G. Reid, D. B. Rodovsky, G. P. Bartholomew, and D. S. Ginger, Nano Lett. 7, 738 (2007).
http://dx.doi.org/10.1021/nl062989e
334.
334. J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gómez Rivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, Nano Lett. 10, 1387 (2010).
http://dx.doi.org/10.1021/nl100145d
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/6/10.1063/1.4720102
Loading
/content/aip/journal/rsi/83/6/10.1063/1.4720102
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/83/6/10.1063/1.4720102
2012-06-07
2014-08-30

Abstract

This is a comprehensive review of the combination of scanning probe microscopy (SPM) with various optical spectroscopies, with a particular focus on Raman spectroscopy. Efforts to combine SPM with optical spectroscopy will be described, and the technical difficulties encountered will be examined. These efforts have so far focused mainly on the development of tip-enhanced Raman spectroscopy, a powerful technique to detect and image chemical signatures with single molecule sensitivity, which will be reviewed. Beyond tip-enhanced Raman spectroscopy and/or topography measurements, combinations of SPM with optical spectroscopy have a great potential in the characterization of structure and quantitative measurements of physical properties, such as mechanical, optical, or electrical properties, in delicate biological samples and nanomaterials. The different approaches to improve the spatial resolution, the chemical sensitivity, and the accuracy of physical properties measurements will be discussed. Applications of such combinations for the characterization of structure, defects, and physical properties in biology and materials science will be reviewed. Due to the versatility of SPM probes for the manipulation and characterization of small and/or delicate samples, this review will mainly focus on the apertureless techniques based on SPM probes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/83/6/1.4720102.html;jsessionid=2thhj3jht710b.x-aip-live-06?itemId=/content/aip/journal/rsi/83/6/10.1063/1.4720102&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Invited Review Article: Combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/6/10.1063/1.4720102
10.1063/1.4720102
SEARCH_EXPAND_ITEM