1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Two-step controllable electrochemical etching of tungsten scanning probe microscopy tips
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/83/6/10.1063/1.4730045
1.
1. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).
http://dx.doi.org/10.1103/PhysRevLett.49.57
2.
2. G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.930
3.
3. H. Y. Liu, F. R. F. Fan, C. W. Lin, and A. J. Bard, J. Am. Chem. Soc. 108, 3838 (1986).
http://dx.doi.org/10.1021/ja00273a054
4.
4. C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang, Phys. Rev. Lett. 59, 1942 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.1942
5.
5. R. Wiesendanger, H.-J. Güntherodt, G. Güntherodt, R. J. Gambino, and R. Ruf, Phys. Rev. Lett. 65, 247 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.247
6.
6. M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991).
http://dx.doi.org/10.1063/1.105227
7.
7. P. J. Bryant, H. S. Kim, Y. C. Zheng, and R. Yang, Rev. Sci. Instrum. 58, 1115 (1987).
http://dx.doi.org/10.1063/1.1139618
8.
8. A. Cricenti, S. Selci, R. Generosi, E. Gori, and G. Chiarotti, Solid State Commun. 70, 897 (1989).
http://dx.doi.org/10.1016/0038-1098(89)90290-1
9.
9. M. Yata, M. Ozaki, S. Sakata, T. Yamada, A. Kohno, and M. Aono, Jpn. J. Appl. Phys. 28, L885 (1989).
http://dx.doi.org/10.1143/JJAP.28.L885
10.
10. L. Libioulle, Y. Houbion, and J.-M. Gilles, J. Vac. Sci. Technol. B 13, 1325 (1995).
http://dx.doi.org/10.1116/1.587847
11.
11. A. J. Nam, A. Teren, T. A. Lusby, and A. J. Melmed, J. Vac. Sci. Technol. B 13, 1556 (1995).
http://dx.doi.org/10.1116/1.588186
12.
12. J. P. Ibe, J. P. P. Bey, S. L. Brandow, R. A. Brizzolara, N. A. Burnham, D. P. DiLella, K. P. Lee, C. R. K. Marrian, and R. J. Colton, J. Vac. Sci. Technol. A 8, 3570 (1990).
http://dx.doi.org/10.1116/1.576509
13.
13. J. P. Song, N. H. Pryds, K. Glejbol, K. A. Morch, A. R. Tholen, and L. N. Christensen, Rev. Sci. Instrum. 64, 900 (1993).
http://dx.doi.org/10.1063/1.1144140
14.
14. H. Lemke, T. Goddenhenrich, H. P. Bochem, U. Hartmann, and C. Heiden, Rev. Sci. Instrum. 61, 2538 (1990).
http://dx.doi.org/10.1063/1.1141911
15.
15. A. I. Oliva, A. Romero G., J. L. Peña, E. Anguiano, and M. Aguilar, Rev. Sci. Instrum. 67, 1917 (1996).
http://dx.doi.org/10.1063/1.1146996
16.
16. Y.-G. Kim, E.-H. Choi, S.-O. Kang, and G. Cho, J. Vac. Sci. Technol. B 16, 2079 (1998).
http://dx.doi.org/10.1116/1.590130
17.
17. L. A. Hockett and S. E. Creager, Rev. Sci. Instrum. 64, 263 (1993).
http://dx.doi.org/10.1063/1.1144394
18.
18. H. Muramatsu, K. Homma, N. Chiba, N. Yamamoto, and A. Egawa, J. Microsc. 194, 383 (1999).
http://dx.doi.org/10.1046/j.1365-2818.1999.00509.x
19.
19. A. Lazarev, N. Fang, Q. Luo, and X. Zhang, Rev. Sci. Instrum. 74, 3684 (2003).
http://dx.doi.org/10.1063/1.1589584
20.
20. S. Patan, E. Cefal, A. Arena, P. Gucciardi, and M. Allegrini, Ultramicroscopy 106, 475 (2006).
http://dx.doi.org/10.1016/j.ultramic.2006.01.002
21.
21. O. L. Guise, J. W. Ahner, M.-C. Jung, P. C. Goughnour, and J. T. Yates, Nano Lett. 2, 191 (2002), http://pubs.acs.org/doi/pdf/10.1021/nl010094q.
http://dx.doi.org/10.1021/nl010094q
22.
22. O. Naaman, W. Teizer, and R. C. Dynes, Rev. Sci. Instrum. 72, 1688 (2001).
http://dx.doi.org/10.1063/1.1344602
23.
23. J. Garnaes, F. Kragh, K. A. Morch, and A. R. Tholen, J. Vac. Sci. Technol. A 8, 441 (1990).
http://dx.doi.org/10.1116/1.576417
24.
24. A. A. Gorbunov, B. Wolf, and J. Edelmann, Rev. Sci. Instrum. 64, 2393 (1993).
http://dx.doi.org/10.1063/1.1143892
25.
25. T. Held, S. Emonin, O. Marti, and O. Hollricher, Rev. Sci. Instrum. 71, 3118 (2000).
http://dx.doi.org/10.1063/1.1304866
26.
26. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, Science 251, 1468 (1991).
http://dx.doi.org/10.1126/science.251.5000.1468
27.
27. B. I. Yakobson, P. J. Moyer, and M. A. Paesler, J. Appl. Phys. 73, 7984 (1993).
http://dx.doi.org/10.1063/1.353911
28.
28. G. A. Valaskovic, M. Holton, and G. H. Morrison, Appl. Opt. 34, 1215 (1995).
http://dx.doi.org/10.1364/AO.34.001215
29.
29. M. Xiao, J. Nieto, R. Machorro, J. Siqueiros, and H. Escamilla, J. Vac. Sci. Technol. B 15, 1516 (1997).
http://dx.doi.org/10.1116/1.589486
30.
30. N. Essaidi, Y. Chen, V. Kottler, E. Cambril, C. Mayeux, N. Ronarch, and C. Vieu, Appl. Opt. 37, 609 (1998).
http://dx.doi.org/10.1364/AO.37.000609
31.
31. Y. Akama, E. Nishimura, A. Sakai, and H. Murakami, J. Vac. Sci. Technol. A 8, 429 (1990).
http://dx.doi.org/10.1116/1.576413
32.
32. K. L. Lee, D. W. Abraham, F. Secord, and L. Landstein, J. Vac. Sci. Technol. B 9, 3562 (1991).
http://dx.doi.org/10.1116/1.585845
33.
33. B. Hbner, H. Koops, H. Pagnia, N. Sotnik, J. Urban, and M. Weber, Ultramicroscopy 4244 (Part 2), 1519 (1992).
http://dx.doi.org/10.1016/0304-3991(92)90476-Z
34.
34. M. Wendel, H. Lorenz, and J. P. Kotthaus, Appl. Phys. Lett. 67, 3732 (1995).
http://dx.doi.org/10.1063/1.115365
35.
35. D. K. Biegelsen, F. A. Ponce, J. C. Tramontana, and S. M. Koch, Appl. Phys. Lett. 50, 696 (1987).
http://dx.doi.org/10.1063/1.98070
36.
36. D. K. Biegelsen, F. A. Ponce, and J. C. Tramontana, Appl. Phys. Lett. 54, 1223 (1989).
http://dx.doi.org/10.1063/1.100722
37.
37. H. Ximen and P. E. Russell, Ultramicroscopy 4244 (Part 2), 1526 (1992).
http://dx.doi.org/10.1016/0304-3991(92)90477-2
38.
38. P. Hoffrogge, H. Kopf, and R. Reichelt, J. Appl. Phys. 90, 5322 (2001).
http://dx.doi.org/10.1063/1.1406548
39.
39. K. Akiyama, T. Eguchi, T. An, Y. Fujikawa, Y. Yamada-Takamura, T. Sakurai, and Y. Hasegawa, Rev. Sci. Instrum. 76, 033705 (2005).
http://dx.doi.org/10.1063/1.1865812
40.
40. R. Hobara, S. Yoshimoto, S. Hasegawa, and K. Sakamoto, J. Surf. Sci. Nanotechnol. 5, 94 (2007).
http://dx.doi.org/10.1380/ejssnt.2007.94
41.
41. B.-F. Ju, Y.-L. Chen, and Y. Ge, Rev. Sci. Instrum. 82, 013707 (2011).
http://dx.doi.org/10.1063/1.3529880
42.
42. H. Al-Falih, Y. Khan, Y. Zhang, D. San-Roman-Alerigi, D. Cha, B. S. Ooi, and T. K. Ng, in High Capacity Optical Networks and Enabling Technologies (HONET), 2011 (2011), pp. 190192.
43.
43. S. W. S. Joseph and W. Lyding, “Nanometer-scale sharpening of conductor tips,” U.S. patent 8,070,920 (2011).
44.
44. M. M. Jobbins, A. F. Raigoza, and S. A. Kandel, Rev. Sci. Instrum. 83, 036105 (2012).
http://dx.doi.org/10.1063/1.3695001
45.
45. Y. Khan and J. Randall, in Proceedings of the Eighth International Conference on Information Technology: New Generations (ITNG) (2011), pp. 965969.
http://dx.doi.org/10.1109/ITNG.2011.165
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/6/10.1063/1.4730045
Loading
/content/aip/journal/rsi/83/6/10.1063/1.4730045
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/83/6/10.1063/1.4730045
2012-06-22
2014-07-13

Abstract

Dynamic electrochemicaletching technique is optimized to produce tungsten tips with controllable shape and radius of curvature of less than 10 nm. Nascent features such as “dynamic electrochemicaletching” and reverse biasing after “drop-off” are utilized, and “two-step dynamic electrochemicaletching” is introduced to produce extremely sharp tips with controllable aspect ratio. Electronic current shut-off time for conventional dc “drop-off” technique is reduced to ∼36 ns using high speed analog electronics. Undesirable variability in tip shape, which is innate to static dc electrochemicaletching, is mitigated with novel “dynamic electrochemicaletching.” Overall, we present a facile and robust approach, whereby using a novel etchant level adjustment mechanism, 30° variability in cone angle and 1.5 mm controllability in cone length were achieved, while routinely producing ultra-sharp probes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/83/6/1.4730045.html;jsessionid=vwbl0nzmxzkw.x-aip-live-06?itemId=/content/aip/journal/rsi/83/6/10.1063/1.4730045&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Two-step controllable electrochemical etching of tungsten scanning probe microscopy tips
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/6/10.1063/1.4730045
10.1063/1.4730045
SEARCH_EXPAND_ITEM