1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Invited Review Article: Technology for Attosecond Science
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/83/7/10.1063/1.4731658
1.
1. G. Farkas and C. Tóth, Phys. Lett. A 168, 447450 (1992).
http://dx.doi.org/10.1016/0375-9601(92)90534-S
2.
2. M. Ferray, A. L’Huillier, X. F. LI, L. A. Lompre, G. Mainfray, and C. Manus, J. Phys. B 21, L31 (1988).
http://dx.doi.org/10.1088/0953-4075/21/3/001
3.
3. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, Phys. Rev. A 49, 2117 (1994).
http://dx.doi.org/10.1103/PhysRevA.49.2117
4.
4. K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander, Phys. Rev. Lett. 70, 1599 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.1599
5.
5. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.1994
6.
6. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, Nature (London) 414, 509 (2001).
http://dx.doi.org/10.1038/35107000
7.
7. P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Auge, P. Balcou, H. G. Muller, and P. Agostini, Science 292, 16891692 (2001).
http://dx.doi.org/10.1126/science.1059413
8.
8. M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, Science 291, 1923 (2001).
http://dx.doi.org/10.1126/science.1058561
9.
9. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Nature (London) 427, 817 (2004).
http://dx.doi.org/10.1038/nature02277
10.
10. E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, Science 317, 769 (2007).
http://dx.doi.org/10.1126/science.1142855
11.
11. M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, D. Kim, F. Krausz, and U. Kleineberg, New J. Phys. 9, 243 (2007).
http://dx.doi.org/10.1088/1367-2630/9/7/243
12.
12. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, Science 302, 1614 (2008).
http://dx.doi.org/10.1126/science.1157846
13.
13. M. J. Abel, T. Pfeifer, P. M. Nagel, W. Boutu, M. J. Bell, C. P. Steiner, D. M. Neumark, and S. R. Leone, Chem. Phys. 366, 9 (2009).
http://dx.doi.org/10.1016/j.chemphys.2009.09.016
14.
14. T. Pfeifer, M. J. Abel, P. M. Nagel, W. Boutu, M. J. Bell, Y. Liu, D. M. Neumark, and S. R. Leone, Opt. Lett. 34, 1819 (2009).
http://dx.doi.org/10.1364/OL.34.001819
15.
15. P. B. Corkum, N. H. Burnett, and M. Y. Ivanov, Opt. Lett. 19, 1870 (1994).
http://dx.doi.org/10.1364/OL.19.001870
16.
16. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. D. Silvestri, and M. Nisoli, Science 314, 443 (2006).
http://dx.doi.org/10.1126/science.1132838
17.
17. H. Mashiko, S. Gilbertson, C. Li, S. D. Khan, M. M. Shakya, E. Moon, and Z. Chang, Phys. Rev. Lett. 100, 103906 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.103906
18.
18. X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. D. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, Phys. Rev. Lett. 103, 183901 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.183901
19.
19. S. Gilbertson, X. Feng, S. Khan, M. Chini, H. Wang, H. Mashiko, and Z. Chang, Opt. Lett. 34, 2390 (2009).
http://dx.doi.org/10.1364/OL.34.002390
20.
20. S. Gilbertson, Y. Wu, S. D. Khan, M. Chini, K. Zhao, X. Feng, and Z. Chang, Phys. Rev. A 81, 043810 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.043810
21.
21. S. Gilbertson, S. D. Khan, Y. Wu, M. Chini, and Z. Chang, Phys. Rev. Lett. 105, 093902 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.093902
22.
22. C. Altucci, R. Velotta, and J. Marangos, J. Mod. Opt. 57, 916 (2010).
http://dx.doi.org/10.1080/09500340.2010.493621
23.
23. C. Altucci, J. Tisch, and R. Velotta, J. Mod. Opt. 58, 1585 (2011).
http://dx.doi.org/10.1080/09500340.2011.611913
24.
24. P. Agostini and L. F. DiMauro, Rep. Prog. Phys. 67, 813 (2004).
http://dx.doi.org/10.1088/0034-4885/67/6/R01
25.
25. A. Scrinzi, M. Y. Ivanov, R. Kienberger, and D. M. Villeneuve, J. Phys. B 39, R1R37 (2006).
http://dx.doi.org/10.1088/0953-4075/39/1/R01
26.
26. P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
http://dx.doi.org/10.1038/nphys620
27.
27. M. F. Kling and M. J. Vrakking, Annu. Rev. Phys. Chem. 59, 463 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093532
28.
28. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.163
29.
29. T. Popmintchev, M. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, Nature Photon. 4, 822 (2010).
http://dx.doi.org/10.1038/nphoton.2010.256
30.
30. J. P. Marangos, S. Baker, N. Kajumba, J. S. Robinson, J. W. G. Tisch, and R. Torres, Phys. Chem. Chem. Phys. 10, 35 (2008).
http://dx.doi.org/10.1039/b714126m
31.
31. M. Fie, M. Schultze, E. Goulielmakis, B. Dennhardt, J. Gagnon, M. Hofstetter, R. Kienberger, and F. Krausz, Rev. Sci. Instrum. 81, 093103 (2010).
http://dx.doi.org/10.1063/1.3475689
32.
32. E. Magerl, S. Neppl, A. L. Cavalieri, E. M. Bothschafter, M. Stanislawski, T. Uphues, M. Hofstetter, U. Kleineberg, J. V. Barth, D. Menzel, F. Krausz, R. Ernstorfer, R. Kienberger, and P. Feulner, Rev. Sci. Instrum. 82, 063104 (2011).
http://dx.doi.org/10.1063/1.3596564
33.
33. Z. Chang and P. Corkum, J. Opt. Soc. Am. B 27, B9 (2010).
http://dx.doi.org/10.1364/JOSAB.27.0000B9
34.
34. G. R. Fleming and M. A. Ratner, Phys. Today 61(7), 28 (2008).
http://dx.doi.org/10.1063/1.2963009
35.
35. S. Baker, J. S. Robinson, C. A. Haworth, H. Teng, R. A. Smith, C. C. Chirila, M. Lein, J. W. G. Tisch, and J. P. Marangos, Science 312, 424 (2006).
http://dx.doi.org/10.1126/science.1123904
36.
36. M. Uiberacker, T. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schroder, M. Lezius, K. L. Kompa, H. Muller, M. J. J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Nature (London) 446, 627 (2007).
http://dx.doi.org/10.1038/nature05648
37.
37. A. L. Cavalieri, N. Muller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blumel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, Nature (London) 449, 1029 (2007).
http://dx.doi.org/10.1038/nature06229
38.
38. L. Cederbaum and J. Zobeley, Chem. Phys. Let. 307, 205 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00508-4
39.
39. F. Remacle and R. D. Levine, Proc. Natl. Acad. Sci. U.S.A. 103, 6793 (2006).
http://dx.doi.org/10.1073/pnas.0601855103
40.
40. D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
http://dx.doi.org/10.1016/0030-4018(85)90120-8
41.
41. M. Hentschel, Z. Cheng, F. Krausz, and C. Spielmann, Appl. Phys. B 70, S161 (2000).
http://dx.doi.org/10.1007/s003400000327
42.
42. A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, and R. Szipocs, Opt. Lett. 20, 602 (1995).
http://dx.doi.org/10.1364/OL.20.000602
43.
43. F. Helbing, G. Steinmeyer, J. Stenger, H. Telle, and U. Keller, Appl. Phys. B 74, s35 (2002).
http://dx.doi.org/10.1007/s00340-002-0898-4
44.
44. H. Telle, G. Steinmeyer, A. Dunlop, J. Stenger, D. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999).
http://dx.doi.org/10.1007/s003400050813
45.
45. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
http://dx.doi.org/10.1126/science.288.5466.635
46.
46. Z. Cheng, F. Krausz, and C. Spielmann, Opt. Commun. 201, 145 (2002).
http://dx.doi.org/10.1016/S0030-4018(01)01675-3
47.
47. A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. Yakovlev, T. Udem, T. Hänsch, and F. Krausz, IEEE J. Sel. Top. Quantum Electron. 9, 972 (2003).
http://dx.doi.org/10.1109/JSTQE.2003.819107
48.
48. Z. Chang, Appl. Opt. 45, 8350 (2006).
http://dx.doi.org/10.1364/AO.45.008350
49.
49. D. F. Hotz, Appl. Opt. 4, 527 (1965).
http://dx.doi.org/10.1364/AO.4.000527
50.
50. P. F. Moulton, J. Opt. Soc. Am. B 3, 125 (1986).
http://dx.doi.org/10.1364/JOSAB.3.000125
51.
51. J. Zhou, C. Huang, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 20, 64 (1995).
http://dx.doi.org/10.1364/OL.20.000064
52.
52. L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hänsch, Opt. Lett. 21, 2008 (1996).
http://dx.doi.org/10.1364/OL.21.002008
53.
53. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.545
54.
54. A. Baltuska, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.133901
55.
55. S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, Nature Photon 4, 462 (2010).
http://dx.doi.org/10.1038/nphoton.2010.91
56.
56. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.1135
57.
57. S. T. Cundiff and J. Ye, Rev. Mod. Phys. 75, 325 (2003).
http://dx.doi.org/10.1103/RevModPhys.75.325
58.
58. A. Anderson, F. Lücking, T. Prikoszovits, M. Hofer, Z. Cheng, C. C. Neacsu, M. Scharrer, S. Rammler, P. S. J. Russell, G. Tempea, and A. Assion, Appl. Phys. B 103, 531 (2011).
http://dx.doi.org/10.1007/s00340-011-4592-2
59.
59. M. Mehendale, S. A. Mitchell, J. Likforman, D. M. Villeneuve, and P. B. Corkum, Opt. Lett. 25, 1672 (2000).
http://dx.doi.org/10.1364/OL.25.001672
60.
60. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira, T. Homma, and H. Takahashi, Opt. Lett. 26, 1436 (2001).
http://dx.doi.org/10.1364/OL.26.001436
61.
61. M. Bradler, P. Baum, and E. Riedle, Appl. Phys. B 97, 561 (2009).
http://dx.doi.org/10.1007/s00340-009-3699-1
62.
62. A. Brodeur and S. L. Chin, J. Opt. Soc. Am. B 16, 637 (1999).
http://dx.doi.org/10.1364/JOSAB.16.000637
63.
63. M. Takeda, H. Ina, and S. Kobayashi, J. Opt. Soc. Am. B 72, 156 (1982).
http://dx.doi.org/10.1364/JOSA.72.000156
64.
64. G. G. Paulus, Laser Physics 15, 843 (2005).
65.
65. G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. De Silvestri, Nature (London) 414, 182 (2001).
http://dx.doi.org/10.1038/35102520
66.
66. C. A. Haworth, L. E. Chipperfield, J. S. Robinson, P. L. Knight, J. P. Marangos, and J. W. G. Tisch, Nat. Phys. 3, 52 (2007).
http://dx.doi.org/10.1038/nphys463
67.
67. C. Hauri, W. Kornelis, F. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79, 673 (2004).
http://dx.doi.org/10.1007/s00340-004-1650-z
68.
68. A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, and A. Mysyrowicz, J. Mod. Opt. 53, 75 (2006).
http://dx.doi.org/10.1080/09500340500227760
69.
69. L. Berg, S. Skupin, and G. Steinmeyer, Phys. Rev. Lett. 101, 213901 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.213901
70.
70. M. Nisoli, S. D. Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
http://dx.doi.org/10.1063/1.116609
71.
71. E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
72.
72. S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, Opt. Lett. 35, 1887 (2010).
http://dx.doi.org/10.1364/OL.35.001887
73.
73. S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, C. Spielmann, F. Krausz, and K. Ferencz, Opt. Lett. 22, 1562 (1997).
http://dx.doi.org/10.1364/OL.22.001562
74.
74. M. Nisoli, S. Stagira, S. D. Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, IEEE J. Sel. Top. Quantum Electron. 4, 414 (1998).
http://dx.doi.org/10.1109/2944.686749
75.
75. A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, Appl. Phys. Lett. 86, 111116 (2005).
http://dx.doi.org/10.1063/1.1883706
76.
76. J. S. Robinson, C. A. Haworth, H. Teng, R. A. Smith, J. P. Marangos, and J. W. G. Tisch, Appl. Phys. B 85, 525 (2006).
http://dx.doi.org/10.1007/s00340-006-2390-z
77.
77. M. Nurhuda, A. Suda, K. Midorikawa, and H. Budiono, J. Opt. Soc. Am. B 22, 1757 (2005).
http://dx.doi.org/10.1364/JOSAB.22.001757
78.
78. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
79.
79. H. Lehmeier, W. Leupacher, and A. Penzkofer, Opt. Commun. 56, 67 (1985).
http://dx.doi.org/10.1016/0030-4018(85)90069-0
80.
80. A. Dalgarno and A. E. Kingston, Proc. R. Soc. London, Ser. A 259, 424 (1960).
http://dx.doi.org/10.1098/rspa.1960.0237
81.
81. M. Nisoli, S. Stagira, S. D. Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, Appl. Phys. B 65, 189196 (1997).
http://dx.doi.org/10.1007/s003400050263
82.
82. T. Nagy, M. Forster, and P. Simon, Appl. Opt. 47, 3264 (2008).
http://dx.doi.org/10.1364/AO.47.003264
83.
83. T. Nagy, V. Pervak, and P. Simon, Opt. Lett. 36, 4422 (2011).
http://dx.doi.org/10.1364/OL.36.004422
84.
84. T. Witting, F. Frank, C. A. Arrell, W. A. Okell, J. P. Marangos, and J. W. G. Tisch, Opt. Lett. 36, 1680 (2011).
http://dx.doi.org/10.1364/OL.36.001680
85.
85. D. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
http://dx.doi.org/10.1109/3.199311
86.
86. C. Iaconis and I. Walmsley, Opt. Lett. 23, 792 (1998).
http://dx.doi.org/10.1364/OL.23.000792
87.
87. A. Dubrouil, Y. Mairesse, B. Fabre, D. Descamps, S. Petit, E. Mével, and E. Constant, Opt. Lett. 36, 2486 (2011).
http://dx.doi.org/10.1364/OL.36.002486
88.
88. P. Villoresi, S. Bonora, M. Pascolini, L. Poletto, G. Tondello, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, and S. De Silvestri, Opt. Lett. 29, 207 (2004).
http://dx.doi.org/10.1364/OL.29.000207
89.
89. M. Nisoli, E. Priori, G. Sansone, S. Stagira, G. Cerullo, S. De Silvestri, C. Altucci, R. Bruzzese, C. de Lisio, P. Villoresi, L. Poletto, M. Pascolini, and G. Tondello, Appl. Phys. B 74, s11 (2002).
http://dx.doi.org/10.1007/s00340-002-0897-5
90.
90. V. V. Strelkov, E. Mevel, and E. Constant, New J. Phys. 10, 083040 (2008).
http://dx.doi.org/10.1088/1367-2630/10/8/083040
91.
91. L. Gallmann, T. Pfeifer, P. Nagel, M. Abel, D. Neumark, and S. Leone, Appl. Phys. B 86, 561 (2006).
http://dx.doi.org/10.1007/s00340-006-2503-8
92.
92. C. Dorrer, E. Kosik, and I. Walmsley, Appl. Phys. B 74, s209 (2002).
http://dx.doi.org/10.1007/s00340-002-0912-x
93.
93. E. M. Kosik, A. S. Radunsky, I. A. Walmsley, and C. Dorrer, Opt. Lett. 30, 326 (2005).
http://dx.doi.org/10.1364/OL.30.000326
94.
94. T. Witting, D. R. Austin, and I. A. Walmsley, Opt. Lett. 34, 881 (2009).
http://dx.doi.org/10.1364/OL.34.000881
95.
95. D. R. Austin, T. Witting, and I. A. Walmsley, Appl. Opt. 48, 3846 (2009).
http://dx.doi.org/10.1364/AO.48.003846
96.
96. J. Peatross, J. L. Chaloupka, and D. D. Meyerhofer, Opt. Lett. 19, 942 (1994).
http://dx.doi.org/10.1364/OL.19.000942
97.
97. D. R. Austin, T. Witting, and I. A. Walmsley, J. Opt. Soc. Am. B 26, 1818 (2009).
http://dx.doi.org/10.1364/JOSAB.26.001818
98.
98. D. Keusters, H. Tan, P. O'shea, E. Zeek, R. Trebino, and W. S. Warren, J. Opt. Soc. Am. B 20, 2226 (2003).
http://dx.doi.org/10.1364/JOSAB.20.002226
99.
99.For further details on the vibration isolation bellow, please contact corresponding author of this paper.
100.
100. P. Antoine, A. L’Huillier, and M. Lewenstein, Phys. Rev. Lett. 77, 1234 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1234
101.
101. Y. Mairesse, O. Gobert, P. Breger, H. Merdji, P. Meynadier, P. Monchicourt, M. Perdrix, P. Salières, and B. Carre, Phys. Rev. Lett. 94, 173903 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.173903
102.
102. R. López-Martens, K. Varú, P. Johnsson, J. Mauritsson, Y. Mairesse, P. Salières, M. B. Gaarde, K. J. Schafer, A. Persson, S. Svanberg, C. Wahlström, and A. L’Huillier, Phys. Rev. Lett. 94, 033001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.033001
103.
103. B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).
http://dx.doi.org/10.1006/adnd.1993.1013
104.
104. T. Kita, T. Harada, N. Nakano, and H. Kuroda, Appl. Opt. 22, 512 (1983).
http://dx.doi.org/10.1364/AO.22.000512
105.
105. F. Paresce, Appl. Opt. 14, 2823 (1975).
http://dx.doi.org/10.1364/AO.14.002823
106.
106. H. Wang, M. Chini, S. D. Khan, S. Chen, S. Gilbertson, X. Feng, H. Mashiko, and Z. Chang, J. Phys. B 42, 134007 (2009).
http://dx.doi.org/10.1088/0953-4075/42/13/134007
107.
107. M. Chini, H. Wang, S. D. Khan, S. Chen, and Z. Chang, Appl. Phys. Lett. 94, 161112 (2009).
http://dx.doi.org/10.1063/1.3125247
108.
108. O. Hemmers, S. B. Whitfield, P. Glans, H. Wang, D. W. Lindle, R. Wehlitz, and I. A. Sellin, Rev. Sci. Instrum. 69, 3809 (1998).
http://dx.doi.org/10.1063/1.1149183
109.
109. F. Grasbon, G. G. Paulus, H. Walther, P. Villoresi, G. Sansone, S. Stagira, M. Nisoli, and S. D. Silvestri, Phys. Rev. Lett. 91, 173003 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.173003
110.
110. D. J. Kennedy and S. T. Manson, Phys. Rev. A 5, 227 (1972).
http://dx.doi.org/10.1103/PhysRevA.5.227
111.
111. G. G. Paulus, F. Lindner, H. Walther, A. Baltuscaronka, E. Goulielmakis, M. Lezius, and F. Krausz, Phys. Rev. Lett. 91, 253004 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.253004
112.
112. T. Wittmann, B. Horvath, W. Helml, M. G. Schatzel, X. Gu, A. L. Cavalieri, G. G. Paulus, and R. Kienberger, Nat. Phys. 5, 357 (2009).
http://dx.doi.org/10.1038/nphys1250
113.
113. A. Apolonski, P. Dombi, G. G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdorfer, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 92, 073902 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.073902
114.
114. M. Kreß, T. Loffler, M. D. Thomson, R. Dorner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H. G. Roskos, Nat. Phys. 2, 327 (2006).
http://dx.doi.org/10.1038/nphys286
115.
115. L. Chipperfield, J. Robinson, P. Knight, J. Marangos, and J. Tisch, Laser Photonics Rev. 4, 697 (2010).
http://dx.doi.org/10.1002/lpor.200900028
116.
116. T. Pfeifer, A. Jullien, M. J. Abel, P. M. Nagel, L. Gallmann, D. M. Neumark, and S. R. Leone, Opt. Express 15, 17120 (2007).
http://dx.doi.org/10.1364/OE.15.017120
117.
117. C. Lemell, X.-M. Tong, F. Krausz, and J. Burgdorfer, Phys. Rev. Lett. 90, 076403 (2004).
http://dx.doi.org/10.1103/PhysRevLett.90.076403
118.
118. A. Jullien, T. Pfeifer, M. J. Abel, P. M. Nagel, M. J. Bell, D. M. Neumark, and S. R. Leone, Appl. Phys. B 93, 433 (2008).
http://dx.doi.org/10.1007/s00340-008-3187-z
119.
119. E. Frumker, G. G. Paulus, H. Niikura, D. M. Villeneuve, and P. B. Corkum, Opt. Lett. 34, 30263028 (2009).
http://dx.doi.org/10.1364/OL.34.003026
120.
120. M. Bellini, C. Lyngå, A. Tozzi, M. B. Gaarde, T. W. Hänsch, A. L’Huillier, and C.-G. Wahlström, Phys. Rev. Lett. 81, 297 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.297
121.
121. D. R. Austin, T. Witting, C. A. Arrell, F. Frank, A. S. Wyatt, J. P. Marangos, J. W. Tisch, and I. A. Walmsley, Opt. Lett. 36, 1746 (2011).
http://dx.doi.org/10.1364/OL.36.001746
122.
122. C. Dorrer and I. Walmsley, J. Opt. Soc. Am. B 19, 1019 (2002).
http://dx.doi.org/10.1364/JOSAB.19.001019
123.
123. L. E. Chipperfield, P. L. Knight, J. W. G. Tisch, and J. P. Marangos, Opt. Commun. 264, 494 (2006).
http://dx.doi.org/10.1016/j.optcom.2006.03.078
124.
124. M. Lewenstein, P. Salières, and A. L’Huillier, Phys. Rev. A 52, 4747 (1995).
http://dx.doi.org/10.1103/PhysRevA.52.4747
125.
125. G. Sansone, F. Kelkensberg, J. F. Pérez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lépine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martín, and M. J. J. Vrakking, Nature (London) 465, 763 (2010).
http://dx.doi.org/10.1038/nature09084
126.
126. G. Lambert, T. Hara, D. Garzella, T. Tanikawa, M. Labat, B. Carre, H. Kitamura, T. Shintake, M. Bougeard, S. Inoue, Y. Tanaka, P. Salières, H. Merdji, O. Chubar, O. Gobert, K. Tahara, and M.-E. Couprie, Nat. Phys. 4, 296 (2008).
http://dx.doi.org/10.1038/nphys889
127.
127. J. Itatani, F. Quere, G. L. Yudin, M. Y. Ivanov, F. Krausz, and P. B. Corkum, Phys. Rev. Lett. 88, 173903 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.173903
128.
128. D. J. Bradley, A. J. F. Durrant, F. O’Neill, and B. Sutherland, Phys. Lett. A 30, 535 (1969).
http://dx.doi.org/10.1016/0375-9601(69)90292-8
129.
129. K. W. DeLong, D. N. Fittinghoff, R. Trebino, B. Kohler, and K. Wilson, Opt. Lett. 19, 2152 (1994).
http://dx.doi.org/10.1364/OL.19.002152
130.
130. D. J. Kane, IEEE J. Quantum Electron. 35, 421 (1999).
http://dx.doi.org/10.1109/3.753647
131.
131. D. J. Kane, J. Opt. Soc. Am. B 25, A120 (2008).
http://dx.doi.org/10.1364/JOSAB.25.00A120
132.
132. Y. Mairesse and F. Quéré, Phys. Rev. A 71, 011401R (2005).
http://dx.doi.org/10.1103/PhysRevA.71.011401
133.
133. F. Frank, “Generation and application of ultrashort laser pulses in attosecond science,” Ph.D. dissertation (Imperial College London, London, 2011).
134.
134. F. Quéré, Y. Mairesse, and J. Itatani, J. Mod. Opt. 52, 339 (2005).
http://dx.doi.org/10.1080/09500340412331307942
135.
135. T. Witting, F. Frank, W. A. Okell, C. A. Arrell, J. P. Marangos, and J. W. G. Tisch, J. Phys. B 45, 074014 (2012).
http://dx.doi.org/10.1088/0953-4075/45/7/074014
136.
136. J. Gagnon, E. Goulielmakis, and V. Yakovlev, Appl. Phys. B 92, 25 (2008).
http://dx.doi.org/10.1007/s00340-008-3063-x
137.
137. M. Chini, S. Gilbertson, S. D. Khan, and Z. Chang, Opt. Express 18, 13006 (2010).
http://dx.doi.org/10.1364/OE.18.013006
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/7/10.1063/1.4731658
Loading
/content/aip/journal/rsi/83/7/10.1063/1.4731658
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/83/7/10.1063/1.4731658
2012-07-13
2014-08-29

Abstract

We describe a complete technological system at Imperial College London for Attosecond Science studies. The system comprises a few-cycle, carrier envelope phase stabilized laser source which delivers sub 4 fs pulses to a vibration-isolated attosecond vacuum beamline. The beamline is used for the generation of isolated attosecond pulses in the extreme ultraviolet (XUV) at kilohertz repetition rates through laser-driven high harmonic generation in gas targets. The beamline incorporates: interferometers for producing pulse sequences for pump-probe studies; the facility to spectrally and spatially filter the harmonic radiation; an in-line spatially resolving XUV spectrometer; and a photoelectron spectroscopy chamber in which attosecond streaking is used to characterize the attosecond pulses. We discuss the technology and techniques behind the development of our complete system and summarize its performance. This versatile apparatus has enabled a number of new experimental investigations which we briefly describe.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/83/7/1.4731658.html;jsessionid=5e1o19c3vjthr.x-aip-live-06?itemId=/content/aip/journal/rsi/83/7/10.1063/1.4731658&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Invited Review Article: Technology for Attosecond Science
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/7/10.1063/1.4731658
10.1063/1.4731658
SEARCH_EXPAND_ITEM