1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
An instrument for 3D x-ray nano-imaging
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/83/7/10.1063/1.4737624
1.
1. B. Kaulich, P. Thibault, A. Gianoncelli, and M. Kiskinova, J. Phys.: Condens. Matter 23(8), 23 (2011).
http://dx.doi.org/10.1088/0953-8984/23/8/083002
2.
2. W. L. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, Nature (London) 435(7046), 1210 (2005).
http://dx.doi.org/10.1038/nature03719
3.
3. M. A. Le Gros, G. McDermott, and C. A. Larabell, Curr. Opin. Struct. Biol. 15(5), 593 (2005).
http://dx.doi.org/10.1016/j.sbi.2005.08.008
4.
4. G. Schneider, P. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J. B. Heymann, W. G. Mueller, and J. G. McNally, Nat. Methods 7(12), 985 (2010).
http://dx.doi.org/10.1038/nmeth.1533
5.
5. D. Shapiro, P. Thibault, T. Beetz, V. Elser, M. Howells, C. Jacobsen, J. Kirz, E. Lima, H. Miao, A. M. Neiman, and D. Sayre, Proc. Natl. Acad. Sci. U.S.A. 102(43), 15343 (2005).
http://dx.doi.org/10.1073/pnas.0503305102
6.
6. Y. Wang, C. Jacobsen, J. Maser, and A. Osanna, J. Microsc. 197, 80 (2000).
http://dx.doi.org/10.1046/j.1365-2818.2000.00629.x
7.
7. A. Leis, B. Rockel, L. Andrees, and W. Baumeister, Trends Biochem. Sci. 34(2), 60 (2009).
http://dx.doi.org/10.1016/j.tibs.2008.10.011
8.
8. J. C. Andrews, S. Brennan, C. Patty, K. Luening, P. Pianetta, E. Almeida, M. C. H. van der Meulen, M. Feser, J. Gelb, J. Rudati, A. Tkachuk, and W. B. Yun, Synchrotron Radiat. News 21(3), 17 (2008).
http://dx.doi.org/10.1080/08940880802123043
9.
9. M. Stampanoni, R. Mokso, F. Marone, J. Vila-Comamala, S. Gorelick, P. Trtik, K. Jefimovs, and C. David, Phys. Rev. B 81(14), 140105 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.140105
10.
10. J. Wang, Y.-C. K. Chen, Q. Yuan, A. Tkachuk, C. Erdonmez, B. Hornberger, and M. Feser, Appl. Phys. Lett. 100(14), 143107 (2012).
http://dx.doi.org/10.1063/1.3701579
11.
11. A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, J. Synchrotron Radiat. 10, 125 (2003).
http://dx.doi.org/10.1107/S0909049502017739
12.
12. K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, Phys. Rev. Lett. 99(26), 264801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.264801
13.
13. G. Morrison, W. J. Eaton, R. Barrett, and P. Charalambous, J. Phys. IV France 104, 547 (2003).
http://dx.doi.org/10.1051/jp4:20030141
14.
14. P. Thibault, M. Dierolf, C. M. Kewish, A. Menzel, O. Bunk, and F. Pfeiffer, Phys. Rev. A 80(4) 043813 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.043813
15.
15. U. Neuhausler, G. Schneider, W. Ludwig, M. A. Meyer, E. Zschech, and D. Hambach, J. Phys. D 36(10A), A79 (2003).
http://dx.doi.org/10.1088/0022-3727/36/10A/316
16.
16. J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, Phys. Rev. Lett. 98(3), 4 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.034801
17.
17. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, Science 321(5887), 379 (2008).
http://dx.doi.org/10.1126/science.1158573
18.
18. J. Vila-Comamala, A. Diaz, M. Guizar-Sicairos, A. Mantion, C. M. Kewish, A. Menzel, O. Bunk, and C. David, Opt. Express 19(22), 21333 (2011).
http://dx.doi.org/10.1364/OE.19.021333
19.
19. K. Giewekemeyer, P. Thibault, S. Kalbfleisch, A. Beerlink, C. M. Kewish, M. Dierolf, F. Pfeiffer, and T. Salditt, Proc. Natl. Acad. Sci. U.S.A. 107(2), 529 (2010).
http://dx.doi.org/10.1073/pnas.0905846107
20.
20. H. S. Youn and S.-W. Jung, J. Microsc. 223, 53 (2006).
http://dx.doi.org/10.1111/j.1365-2818.2006.01592.x
21.
21. M. Beckers, T. Senkbeil, T. Gorniak, M. Reese, K. Giewekemeyer, S. C. Gleber, T. Salditt, and A. Rosenhahn, Phys. Rev. Lett. 107(20), 208101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.208101
22.
22. C. Rau, U. Wagner, Z. Pesic, and A. De Fanis, Phys. Status Solidi A 208(11), 2522 (2011).
http://dx.doi.org/10.1002/pssa.201184272
23.
23. D. J. Vine, G. J. Williams, J. N. Clark, C. T. Putkunz, M. A. Pfeifer, D. Legnini, C. Roehrig, E. Wrobel, E. Huwald, G. van Riessen, B. Abbey, T. Beetz, J. Irwin, M. Feser, B. Hornberger, I. McNulty, K. A. Nugent, and A. G. Peele, Rev. Sci. Instrum. 83(3), 5 (2012).
http://dx.doi.org/10.1063/1.3688655
24.
24. Y. Takahashi, A. Suzuki, N. Zettsu, Y. Kohmura, K. Yamauchi, and T. Ishikawa, Appl. Phys. Lett. 99(13), 131905 (2011).
http://dx.doi.org/10.1063/1.3644396
25.
25. A. Tripathi, J. Mohanty, S. H. Dietze, O. G. Shpyrko, E. Shipton, E. E. Fullerton, S. S. Kim, and I. McNulty, Proc. Natl. Acad. Sci. U.S.A. 108(33), 13393 (2011).
http://dx.doi.org/10.1073/pnas.1104304108
26.
26. S. Hoenig, R. Hoppe, J. Patommel, A. Schropp, S. Stephan, S. Schoeder, M. Burghammer, and C. G. Schroer, Opt. Exp. 19(17), 16324 (2011).
http://dx.doi.org/10.1364/OE.19.016324
27.
27. M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, Nature (London) 467, (7314), 436 (2010).
http://dx.doi.org/10.1038/nature09419
28.
28. M. Guizar-Sicairos, A. Diaz, M. Holler, M. S. Lucas, A. Menzel, R. A. Wepf, and O. Bunk, Opt. Exp. 19(22), 21345 (2011).
http://dx.doi.org/10.1364/OE.19.021345
29.
29. A. Diaz, P. Trtik, M. Guizar-Sicairos, A. Menzel, P. Thibault, and O. Bunk, Phys. Rev. B 85(2), 020104 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.020104
30.
30. P. Trtik, A. Diaz, M. Guizar-Sicairos, A. Menzel, and O. Bunk, “Density mapping of hardened cement paste using ptychographic X-ray computed tomography,” Cem. Concr. Compos. (to be published).
31.
31. B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, Nucl. Instrum. Methods Phys. Res. A 607(1), 247 (2009).
http://dx.doi.org/10.1016/j.nima.2009.03.200
32.
32. J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Farm, M. Ritala, and C. David, Nanotechnology 21(28), 285305 (2010).
http://dx.doi.org/10.1088/0957-4484/21/28/285305
33.
33. C. M. Kewish, M. Guizar-Sicairos, C. Liu, J. Qian, B. Shi, C. Benson, A. M. Khounsary, J. Vila-Comamala, O. Bunk, J. R. Fienup, A. T. Macrander, and L. Assoufid, Opt. Exp. 18(22), 23420 (2010).
http://dx.doi.org/10.1364/OE.18.023420
34.
34. M. van Heel and M. Schatz, J. Struct. Biol. 151(3), 250 (2005).
http://dx.doi.org/10.1016/j.jsb.2005.05.009
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/7/10.1063/1.4737624
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic of the tomography setup. X-rays enter the setup from the left and propagate through the beam-defining pinhole through the sample to the detector. See text for details.

Image of FIG. 2.

Click to view

FIG. 2.

Schematic illustration of the two laser interferometers used as exteroceptive metrology systems to measure differentially the position of the sample with respect to the illuminating pinhole. (a) Vertical interferometer (y-direction) and (b) interferometer for the horizontal measurement (x-direction), PAT PEND. BS = beam splitter, PSD = position-sensitive detector.

Image of FIG. 3.

Click to view

FIG. 3.

Schematic of the 2D data acquisition procedure.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Phase of the reconstructed test structures in radians. The solid line indicates the position of the phase profile shown in Fig. 5(a). The radial scanning step of 500 nm is indicated by the scale bar. (b) Same scale representation of the x-ray illumination on the sample with a size almost as large as the field of view. Amplitude and phase in (b) are shown in linear scale as intensity and hue, respectively.

Image of FIG. 5.

Click to view

FIG. 5.

(a) Phase profile indicated by the solid line in Fig. 4(a). Measured values are shown as red dots, the blue line is an interpolation. As expected, three phase levels can be observed along with sharp lines originating from the iridium coating. The full width half maximum of 26 nm on the iridium phase peaks give an upper bound to the resolution. (b) Fourier ring correlation on two independent datasets gives a resolution of about 18 nm.

Image of FIG. 6.

Click to view

FIG. 6.

3D electron density representation of the phase tomogram of a fragment of a computer processor test sample. We show in red the Cu connects, while the SiO2 matrix is shown in a semitransparent grey color. The full tomogram has a volume of 9 × 9 × 5 μm3 (enhanced online). [URL: http://dx.doi.org/10.1063/1.4737624.1]10.1063/1.4737624.1

Image of FIG. 7.

Click to view

FIG. 7.

(a) 2D electron density of the tomogram shown in Fig. 6 in the y/z plane. The image reveals the high density contrast between Cu interconnects and the SiO2 matrix. The arrow indicates a crack in the sample. (b) Profile along the red line in (a). The inset shows a detail of the profile indicated by a dotted square.

video/mp4,video/x-flv,video/flv,audio.mp3,audio.mpeg

Multimedia

The following multimedia file is available:
Loading

Article metrics loading...

/content/aip/journal/rsi/83/7/10.1063/1.4737624
2012-07-26
2014-04-21

Abstract

We present an instrument dedicated to 3D scanning x-ray microscopy, allowing a sample to be precisely scanned through a beam while the angle of x-ray incidence can be changed. The position of the sample is controlled with respect to the beam-defining optics by laser interferometry. The instrument achieves a position stability better than 10 nm standard deviation. The instrument performance is assessed using scanning x-ray diffractionmicroscopy and we demonstrate a resolution of 18 nm in 2D imaging of a lithographic test pattern while the beam was defined by a pinhole of 3 μm in diameter. In 3D on a test object of copper interconnects of a microprocessor, a resolution of 53 nm is achieved.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/83/7/1.4737624.html;jsessionid=n727w026ir4a.x-aip-live-06?itemId=/content/aip/journal/rsi/83/7/10.1063/1.4737624&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: An instrument for 3D x-ray nano-imaging
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/7/10.1063/1.4737624
10.1063/1.4737624
SEARCH_EXPAND_ITEM