1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
A soft and transparent handleable protein model
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/83/8/10.1063/1.4739961
1.
1. J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, 5th ed. (Freeman, New York, 2002).
2.
2. A. M. Wu and P. D. Senter, “Arming antibodies: prospects and challenges for immunoconjugates,” Nat. Biotechnol. 23, 1137 (2005).
http://dx.doi.org/10.1038/nbt1141
3.
3. G. Del Re, “Models and analogies in science,” HYLE: Int. J. Philos. Chem. 6, 5 (2000).
4.
4. J. D. Watson and F. H. Crick, “Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid,” Nature (London) 171, 737 (1953).
http://dx.doi.org/10.1038/171737a0
5.
5. L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals (Cornell University Press, New York, 1960).
6.
6. R. B. Corey and L. Pauling, “Molecular models of amino acids, peptides, and proteins,” Rev. Sci. Instrum. 24, 621 (1953).
http://dx.doi.org/10.1063/1.1770803
7.
7. Editorial, “String and sealing wax,” Nat. Struct. Biol. 4, 961 (1997).
8.
8. M. J. Bailey, K. Schulten, and J. E. Johnson, “The use of solid physical models for the study of macromolecular assembly,” Curr. Opin. Struct. Biol. 8, 202 (1998).
http://dx.doi.org/10.1016/S0959-440X(98)80039-0
9.
9. A. Gillet, M. Sanner, D. Stoffler, and A. Olson, “Tangible interfaces for structural molecular biology,” Structure (London) 13, 483 (2005).
http://dx.doi.org/10.1016/j.str.2005.01.009
10.
10. T. Herman, J. Morris, S. Colton, A. Batiza, M. Patrick, M. Franzen, and D. S. Goodsell, “Tactile teaching: Exploring protein structure/function using physical models,” Biochem. Mol. Biol. Educ. 34, 247 (2006).
http://dx.doi.org/10.1002/bmb.2006.494034042649
11.
11. G. A. Bain, J. Yi, M. Beikmohamadi, T. M. Herman, and M. A. Patrick, “Using physical models of biomolecular structures to teach concepts of biochemical structure and structure depiction in the introductory chemistry laboratory,” J. Chem. Educ. 83, 1322 (2006).
http://dx.doi.org/10.1021/ed083p1322
12.
12. Housholder R. , “Molding process,” U.S. patent 4247508 (Jan 27, 1981).
13.
13. R. Sayle and A. Bissell, in Proceedings of the 10th Eurographics UK ‘92 Conference (University of Edinburgh, Scotland, 1992).
14.
14. R. Koradi, M. Billeter, and K. Wüthrich, “molmol: a program for display and analysis of macromolecular structures,” J. Mol. Graph. 14, 29 (1996).
http://dx.doi.org/10.1016/0263-7855(96)00009-4
15.
15. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, “UCSF Chimera–a visualization system for exploratory research and analysis,” J. Comput. Chem. 25, 1605 (2004).
http://dx.doi.org/10.1002/jcc.20084
16.
16. F. M. Richards, “Areas, volumes, packing and protein structure,” Annu. Rev. Biophys. Bioeng. 6, 151 (1977).
http://dx.doi.org/10.1146/annurev.bb.06.060177.001055
17.
17. M. L. Connolly, “Analytical molecular surface calculation,” J. Appl. Cryst. 16, 548 (1983).
http://dx.doi.org/10.1107/S0021889883010985
18.
18. T. J. Richmond, “Solvent accessible surface area and excluded volume in proteins: Analytical equations for overlapping spheres and implications for the hydrophobic effect,” J. Mol. Biol. 178, 63 (1984).
http://dx.doi.org/10.1016/0022-2836(84)90231-6
19.
19. K. Kinoshita and H. Nakamura, “eF-site and PDBjViewer: database and viewer for protein functional sites,” Bioinformatics 20, 1329 (2004).
http://dx.doi.org/10.1093/bioinformatics/bth073
20.
20. J. C. Kendrew, G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff, and D. C. Phillips, “A three-dimensional model of the myoglobin molecule obtained by x-ray analysis,” Nature (London) 181, 662 (1958).
http://dx.doi.org/10.1038/181662a0
21.
21. H. Frauenfelder, S. G. Sligar, and P. G. Wolynes, “The energy landscapes and motions of proteins,” Science 254, 1598 (1991).
http://dx.doi.org/10.1126/science.1749933
22.
22. M. F. Perutz and J. Greer, “Stereochemical effects of amino acid substitution in abnormal human haemoglobin,” Biochem. J. 119, 31P (1970).
23.
23. G. Fermi and M. F. Perutz, in Atlas on Molecular Structures in Biology, edited by D. C. Philips and F. M. Richards (Clarendon, Oxford, 1981), Vol. 2, 2224.
24.
24. M. Go, “Correlation of DNA exonic regions with protein structural units in haemoglobin,” Nature (London) 291, 90 (1981).
http://dx.doi.org/10.1038/291090a0
25.
25. T. Noguti, H. Sakakibara, and M. Go, “Localization of hydrogen-bonds within modules in barnase,” Proteins 16, 357 (1993).
http://dx.doi.org/10.1002/prot.340160405
26.
26. S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A. Leaver-Fay, D. Baker, Z. Popovic, and F. Players, “Predicting protein structures with a multiplayer online game,” Nature (London) 466, 756 (2010).
http://dx.doi.org/10.1038/nature09304
27.
27. F. Khatib, F. DiMaio, S. Cooper, M. Kazmierczyk, M. Gilski, S. Krzywda, H. Zabranska, I. Pichova, J. Thompson, Z. Popovic, M. Jaskolski, and D. Baker, “Crystal structure of a monomeric retroviral protease solved by protein folding game players,” Nat. Struct. Mol. Biol. 18, 1175 (2011).
http://dx.doi.org/10.1038/nsmb.2119
28.
28. See supplementary material at http://dx.doi.org/10.1063/1.4739961 for demonstration figures and movies of new models. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/8/10.1063/1.4739961
Loading
/content/aip/journal/rsi/83/8/10.1063/1.4739961
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/83/8/10.1063/1.4739961
2012-08-08
2014-10-22

Abstract

The field of structural biology currently relies on computer-generated graphical representations of three-dimensional (3D) structures to conceptualize biomolecules. As the size and complexity of the molecular structure increases, model generation and peer discussions become more difficult. It is even more problematic when discussing protein–proteininteractions wherein large surface area contact is considered. This report demonstrates the viability of a new handleable protein molecular model with a soft and transparent silicone body similar to the molecule's surface. A full-color printed main chain structure embedded in the silicone body enables users to simultaneously feel the molecular surface, view through the main chain structure, and manually simulate molecular docking. The interactive, hands-on experience deepens the user's intuitive understanding of the complicated 3D proteinstructure and elucidates ligand binding and protein–proteininteractions. This model would be an effective discussion tool for the classroom or laboratory that stimulates inspired learning in this study field.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/83/8/1.4739961.html;jsessionid=174i3mmwygi37.x-aip-live-02?itemId=/content/aip/journal/rsi/83/8/10.1063/1.4739961&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A soft and transparent handleable protein model
http://aip.metastore.ingenta.com/content/aip/journal/rsi/83/8/10.1063/1.4739961
10.1063/1.4739961
SEARCH_EXPAND_ITEM