1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Invited Review Article: Recent developments in isotope-ratio mass spectrometry for geochemistry and cosmochemistry
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/1/10.1063/1.4765055
1.
1. E. Rutherford, Philos. Trans. R. Soc. London, Ser. A 204, 169219 (1905).
http://dx.doi.org/10.1098/rsta.1905.0005
2.
2. J. J. Thomson, Proc. R. Soc. London, Ser. A 89, 120 (1913).
http://dx.doi.org/10.1098/rspa.1913.0057
3.
3. A. J. Dempster, Phys. Rev. 11, 316325 (1918).
http://dx.doi.org/10.1103/PhysRev.11.316
4.
4. K. M. Downard, Eur. J. Mass Spectrom. 13, 177190 (2007).
http://dx.doi.org/10.1255/ejms.878
5.
5. J. De Laeter and M. D. Kurz, J. Mass Spectrom. 41(7), 847854 (2006).
http://dx.doi.org/10.1002/jms.1057
6.
6. A. O. Nier, Rev. Sci. Instrum. 11, 212216 (1940).
http://dx.doi.org/10.1063/1.1751688
7.
7. T. W. Burgoyne and G. M. Hieftje, Mass Spectrom. Rev. 15(4), 241259 (1996).
http://dx.doi.org/10.1002/(SICI)1098-2787(1996)15:4<241::AID-MAS2>3.0.CO;2-I
8.
8. H. Matsuda, Int. J. Mass Spectrom. Ion Phys. 14, 219233 (1974).
http://dx.doi.org/10.1016/0020-7381(74)80009-4
9.
9. H. Matsuda, Nucl. Instrum. Methods Phys. Res. A 298, 199204 (1990).
http://dx.doi.org/10.1016/0168-9002(90)90617-F
10.
10. W. Paul and H. Steinwedel, Zeitschrift für Naturforschung A 8, 448450 (1953).
11.
11. W. E. Stephens, Phys. Rev. 69, 691 (1946).
12.
12. W. Wien, Ann. Phys. 301, 440452 (1898).
http://dx.doi.org/10.1002/andp.18983010618
13.
13. A. D. McNaught and A. Wilkinson, IUPAC: Compendium of Chemical Terminology, 2nd ed. (Blackwell Scientific, Oxford, 1997); the “Gold Book”: XML online corrected version: http://goldbook.iupac.org (2006) created by M. Nic, J. Jirat, and B. Kosata; updates compiled by A. Jenkins.
14.
14. T. M. Esat, Nucl. Instrum. Methods Phys. Res. B 5, 545553 (1984).
http://dx.doi.org/10.1016/0168-583X(84)90015-6
15.
15. R. D. Russell, J. Geophys. Res. 76, 49494953, doi:10.1029/JB076i020p04949 (1971).
http://dx.doi.org/10.1029/JB076i020p04949
16.
16. J. M. Hayes and D. A. Schoeller, Anal. Chem. 49(2), 306311 (1977).
http://dx.doi.org/10.1021/ac50010a031
17.
17. T. M. Esat, Int. J. Mass Spectrom. Ion Process. 148, 159170 (1995).
http://dx.doi.org/10.1016/0168-1176(95)04234-C
18.
18. M. Ozima and F. A. Podosek, Noble Gas Geochemistry, 2nd ed. (Cambridge University Press, 2002).
19.
19. P. R. Renne, R. Mundil, G. Balco, K. Min, and K. R. Ludwig, Geochim. Cosmochim. Acta 74(18), 53495367 (2010).
http://dx.doi.org/10.1016/j.gca.2010.06.017
20.
20. I. McDougall and T. M. Harrison, Geochronology and Thermochronology by the 40Ar/39Ar Method, 2nd ed. (Oxford University Press, Oxford, 1999).
21.
21. J. D. Gilmour, I. C. Lyon, W. A. Johnston, and G. Turner, Rev. Sci. Instrum. 65(3), 617625 (1994).
http://dx.doi.org/10.1063/1.1145127
22.
22. S. A. Crowther, M. J. Filtness, and J. D. Gilmour, Lunar Planet. Sci. XXXIX, 1762 (2008).
23.
23. G. Turner, T. M. Harrison, G. Holland, S. J. Mojzsis and J. Gilmour, Science 306(5693), 8991 (2004).
http://dx.doi.org/10.1126/science.1101014
24.
24. Z. Sharp, Principles of Stable Isotope Geochemistry (Prentice-Hall, 2007).
25.
25. H. Craig, Science 133, 17021703 (1961).
http://dx.doi.org/10.1126/science.133.3465.1702
26.
26. M. H. Thiemens and J. E. Heidenreich III, Science 219(4588), 10731075 (1983).
http://dx.doi.org/10.1126/science.219.4588.1073
27.
27. T. R. Ireland, Austral. J. Earth. Sci. 59, 225236 (2012).
http://dx.doi.org/10.1080/08120099.2012.620626
28.
28. R. N. Clayton and T. K. Mayeda, Geochim. Cosmochim. Acta 27, 4352 (1963).
http://dx.doi.org/10.1016/0016-7037(63)90071-1
29.
29. R. N. Clayton, N. Onuma and T. K. Mayeda, Earth Planet. Sci. Lett. 30, 1018 (1976).
http://dx.doi.org/10.1016/0012-821X(76)90003-0
30.
30. J. Farquhar, H. Bao and M. Thiemens, Science 289(5480), 756759 (2000).
http://dx.doi.org/10.1126/science.289.5480.756
31.
31. J. M. Eiler, Earth Planet. Sci. Lett. 262, 309327 (2007).
http://dx.doi.org/10.1016/j.epsl.2007.08.020
32.
32. N. Jones, Earth Magazine 57, 4045 (2012).
33.
33. J. Völkening, T. Walczyk, and K. G. Heumann, Int. J. Mass Spectrom. Ion Process. 105(2), 147159 (1991).
http://dx.doi.org/10.1016/0168-1176(91)80077-Z
34.
34. R. L. Edwards, H. Cheng, M. T. Murrell, and S. J. Goldstein, Science 276(5313), 782786 (1997).
http://dx.doi.org/10.1126/science.276.5313.782
35.
35. P. J. Debievre and G. H. Debus, Nucl. Instrum. Methods 32(2), 224228 (1965).
http://dx.doi.org/10.1016/0029-554X(65)90516-1
36.
36. K. Habfast, Int. J. Mass Spectrom. Ion Process. 51(2-3), 165189 (1983).
http://dx.doi.org/10.1016/0020-7381(83)85004-9
37.
37. E. Rutherford, Die Radioaktivität (Springer, Berlin, 1907).
38.
38. D. O. Froude, T. R. Ireland, P. D. Kinny, I. S. Williams, W. Compston, I. R. Williams, and J. S. Myers, Nature (London) 304, 616618 (1983).
http://dx.doi.org/10.1038/304616a0
39.
39. T. E. Krogh, Geochim. Cosmochim. Acta 37, 485494 (1973).
http://dx.doi.org/10.1016/0016-7037(73)90213-5
40.
40. J. Roddick, W. Loveridge, and R. Parrish, Chem. Geol. 66(1-2), 111121 (1987).
http://dx.doi.org/10.1016/0168-9622(87)90034-0
41.
42.
42. L. R. Edwards, J. H. Chen, and G. J. Wasserburg, Earth Planet. Sci. Lett. 81(2-3), 175192 (1987).
http://dx.doi.org/10.1016/0012-821X(87)90154-3
43.
43. A. P. Dickin, Radiogenic Isotope Geology, 2nd ed. (Cambridge University Press, 2005).
44.
44. N. Kinoshita, M. Paul, Y. Kashiv, P. Collon, C. M. Deibel, B. DiGiovine, J. P. Greene, D. J. Henderson, C. L. Jiang, S. T. Marley, T. Nakanishi, R. C. Pardo, K. E. Rehm, D. Robertson, R. Scott, C. Schmitt, X. D. Tang, R. Vondrasek, and A. Yokoyama, Science 335, 1614 (2012).
http://dx.doi.org/10.1126/science.1215510
45.
45. G. Caro, Earth Planet Sci. 39, 3158 (2011).
http://dx.doi.org/10.1146/annurev-earth-040610-133400
46.
46. G. Caro, B. Bourdon, J. L. Birck, and S. Moorbath, Nature (London) 423(6938), 428432 (2003).
http://dx.doi.org/10.1038/nature01668
47.
47. V. C. Bennett, A. D. Brandon, and A. P. Nutman, Science 318(5858), 19071910 (2007).
http://dx.doi.org/10.1126/science.1145928
48.
48. P. J. Patchett and M. Tatsumoto, Contrib. Mineral. Petrol. 75, 263237 (1980).
http://dx.doi.org/10.1007/BF01166766
49.
49. C. L. Harper and S. B. Jacobsen, Geochim. Cosmochim. Acta 60, 11311153 (1996).
http://dx.doi.org/10.1016/0016-7037(96)00027-0
50.
50. R. S. Houk, Anal. Chem. 58(1), 97A105A (1986).
http://dx.doi.org/10.1021/ac00292a003
51.
51. D. C. Lee and A. N. Halliday, Nature (London) 378(6559), 771774 (1995).
http://dx.doi.org/10.1038/378771a0
52.
52. J. Blichert-Toft, C. Chauvel, and F. Albarede, Contrib. Mineral. Petrol. 127, 248260 (1997).
http://dx.doi.org/10.1007/s004100050278
53.
53. R. S. Houk, V. A. Fassel, G. D. Flesch, H. J. Svec, A. L. Gray, and C. E. Taylor, Anal. Chem. 52(14), 22832289 (1980).
http://dx.doi.org/10.1021/ac50064a012
54.
54. D. Vance and M. Thirlwall, Chem. Geol. 185(3-4), 227240 (2002).
http://dx.doi.org/10.1016/S0009-2541(01)00402-8
55.
55. H. M. Williams, C. A. McCammon, A. H. Peslier, A. N. Halliday, N. Teutsch, S. Levasseur, and J. P. Burg, Science 304(5677), 16561659 (2004).
http://dx.doi.org/10.1126/science.1095679
56.
56. C. M. Johnson and B. L. Beard, Science 309(5737), 10251027 (2005).
http://dx.doi.org/10.1126/science.1112552
57.
57. A. D. Anbar, J. E. Roe, J. Barling, and K. H. Nealson, Science 288(5463), 126128 (2000).
http://dx.doi.org/10.1126/science.288.5463.126
58.
58. M. Schiller, M. R. Handler, and J. A. Baker, Earth Planet. Sci. Lett. 297(1-2), 165173 (2010).
http://dx.doi.org/10.1016/j.epsl.2010.06.017
59.
59. A. Shukolyukov and G. W. Lugmair, Earth Planet. Sci. Lett. 119(1-2), 159166 (1993).
http://dx.doi.org/10.1016/0012-821X(93)90013-Y
60.
60. S. Tachibana and G. R. Huss, Astrophys. J. Lett. 588, L41L44 (2003).
http://dx.doi.org/10.1086/375362
61.
61. R. C. Ogliore, G. R. Huss, and K. Nagashima, Nucl. Instrum. Methods Phys. Res. B 269, 19101918 (2011).
http://dx.doi.org/10.1016/j.nimb.2011.04.120
62.
62. M. Bizzarro, D. Ulfbeck, A. Trinquier, K. Thrane, J. N. Connelly, and B. S. Meyer, Science 316(5828), 11781181 (2007).
http://dx.doi.org/10.1126/science.1141040
63.
63. M. Regelous, T. Elliott, and C. D. Coath, Earth Planet. Sci. Lett. 272(1-2), 330338 (2008).
http://dx.doi.org/10.1016/j.epsl.2008.05.001
64.
64. G. A. Brennecka, S. Weyer, M. Wadhwa, P. E. Janney, J. Zipfel, and A. D. Anbar, Science 327(5964), 449451 (2010).
http://dx.doi.org/10.1126/science.1180871
65.
65. Y. Amelin, A. Kaltenbach, T. Iizuka, C. H. Stirling, T. R. Ireland, M. Petaev, and S. B. Jacobsen, Earth Planet. Sci. Lett. 300(3-4), 343350 (2010).
http://dx.doi.org/10.1016/j.epsl.2010.10.015
66.
66. J. Hiess, D. J. Condon, N. McLean, and S. R. Noble, Science 335, 16101614 (2012).
http://dx.doi.org/10.1126/science.1215507
67.
67. J. H. Chen and G. J. Wasserburg, Geophys. Res. Lett. 7(4), 275278, doi:10.1029/GL007i004p00275 (1980).
http://dx.doi.org/10.1029/GL007i004p00275
68.
68. P. Arrowsmith, Anal. Chem. 59(10), 14371444 (1987).
http://dx.doi.org/10.1021/ac00137a014
69.
69. R. Feng, N. Macado, and J. Ludden, Geochim. Cosmochim. Acta 57, 34793486 (1993).
http://dx.doi.org/10.1016/0016-7037(93)90553-9
70.
70. S. M. Eggins, L. K. Kinsley, and J. M. G. Shelley, Appl. Surf. Sci. 127-129(1-2), 278286 (1998).
http://dx.doi.org/10.1016/S0169-4332(97)00643-0
71.
71. S. E. Jackson, N. J. Pearson, W. L. Griffin, and E. A. Belusova, Chem. Geol. 211, 4769 (2004).
http://dx.doi.org/10.1016/j.chemgeo.2004.06.017
72.
72. M. F. Thirlwall and A. J. Walder, Chem. Geol. 122(1-4), 241247 (1995).
http://dx.doi.org/10.1016/0009-2541(95)00003-5
73.
73. S. M. Eggins, R. L. Rudnick, and W. F. McDonough, Earth Planet. Sci. Lett. 154(1-4), 5371 (1998).
http://dx.doi.org/10.1016/S0012-821X(97)00195-7
74.
74. N. Shimizu and S. R. Hart, Annu. Rev. Earth Planet Sci. 10, 483 (1982).
http://dx.doi.org/10.1146/annurev.ea.10.050182.002411
75.
75. W. Compston, S. Clement, and G. Newstead, Abstract presented at the International Secondary Ion Mass Spectrometry Conference, Munster, 1977; see Ref. 76.
76.
76. T. R. Ireland, S. Clement, W. Compston, J. J. Foster, P. Holden, B. Jenkins, P. Lanc, N. Schram, and I. S. Williams, Austral. J. Earth. Sci. 55(6-7), 937954 (2008).
http://dx.doi.org/10.1080/08120090802097427
77.
77. U. Schärer and C. J. Allegre, Nature (London) 315(6014), 5255 (1985);
http://dx.doi.org/10.1038/315052a0
77.W. Compston, D. O. Froude, T. R. Ireland, P. D. Kinny, I. S. Williams, I. R. Williams, and J. S. Myers, Nature (London) 317(6037), 559560 (1985).
http://dx.doi.org/10.1038/317559c0
78.
78. S. R. Messenger, L. P. Keller, F. J. Stadermann, R. M. Walker, and E. Zinner, Science 300, 105108 (2003).
http://dx.doi.org/10.1126/science.1080576
79.
79. R. L. Hervig, P. Williams, R. M. Thomas, S. N. Schauer, and I. M. Steele, Int. J. Mass Spectrom. Ion Process. 120(1-2), 4563 (1992).
http://dx.doi.org/10.1016/0168-1176(92)80051-2
80.
80. J. M. Eiler, C. M. Graham, and J. W. Valley, Chem. Geol. 138, 221244 (1997).
http://dx.doi.org/10.1016/S0009-2541(97)00015-6
81.
81. R. B. Ickert, J. Hiess, I. S. Williams, P. Holden, T. R. Ireland, P. Lanc, N. Schram, J. J. Foster, and S. W. Clement, Chem. Geol. 257(1-2), 114128 (2008).
http://dx.doi.org/10.1016/j.chemgeo.2008.08.024
82.
82. N. T. Kita, T. Ushikubo, B. Fu, and J. W. Valley, Chem. Geol. 264, 4357 (2009).
http://dx.doi.org/10.1016/j.chemgeo.2009.02.012
83.
83. K. I. Mahon, T. M. Harrison, and K. D. McKeegan, Chem. Geol. 152(3-4), 257271 (1998).
http://dx.doi.org/10.1016/S0009-2541(98)00116-8
84.
84. K. D. McKeegan, D. S. Burnett, C. D. Coath, G. Jarzebinski, and P. H. Mao, in Workshop on Cometary Dust in Astrophysics, edited by D. E. Brownlee, L. P. Keller and S. R. Messenger (Lunar and Planetary Institute Contribution No. 1182, Houston, 2003), p. 47.
85.
85. K. D. McKeegan, A. P. A. Kallio, V. S. Heber, G. Jarzebinski, P. H. Mao, C. D. Coath, T. Kunihiro, R. C. Wiens, J. E. Nordholt, R. W. Moses, D. B. Reisenfeld, A. J. G. Jurewicz, and D. S. Burnett, Science 332(6037), 15281532 (2011).
http://dx.doi.org/10.1126/science.1204636
86.
86. E. A. Mathez and D. W. Mogk, Am. Mineral. 83, 918924 (1998).
87.
87. A. Benninghoven, Angew. Chem. 33(10), 10231043 (1994).
http://dx.doi.org/10.1002/anie.199410231
88.
88. T. Stephan, E. K. Jessberger, W. Klock, H. Rulle, and J. Zehnpfenning, Earth Planet. Sci. Lett. 128(3-4), 453467 (1994).
http://dx.doi.org/10.1016/0012-821X(94)90162-7
89.
89. M. R. Savina, M. J. Pellin, C. E. Tripa, I. V. Veryovkin, W. F. Calaway, and A. M. Davis, Geochim. Cosmochim. Acta 67, 32153225 (2003).
http://dx.doi.org/10.1016/S0016-7037(03)00082-6
90.
90. D. Okumura, M. Toyoda, M. Ishihara, and I. Katakuse, Eur. J. Mass Spectrom. 11, 261266 (2005).
http://dx.doi.org/10.1255/ejms.727
91.
91. K. Bajo, S. Ebata, H. Yurimoto, K. Uchino, M. Ishihara, S. Itose, M. Matsuya, and M. Kudo, in 6th Biennial Geochemical SIMS Workshop, Hawaii (2011).
92.
92. T. Stephan, A. M. Davis, M. J. Pellin, M. R. Savina, I. V. Veryovkin, A. J. King, N. Liu, R. Trappitsch, and R. Yokochi, Meteorit. Planet. Sci. 46, A222 (2011).
93.
93. R. Hill, P. Blenkinsopp, S. Thompson, J. Vickerman, and J. S. Fletcher, Surf. Interface Anal. 43, 506509 (2011).
http://dx.doi.org/10.1002/sia.3562
94.
94. M. Toyoda, Eur. J. Mass Spectrom. 16, 397406 (2010).
http://dx.doi.org/10.1255/ejms.1076
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/1/10.1063/1.4765055
Loading
/content/aip/journal/rsi/84/1/10.1063/1.4765055
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/1/10.1063/1.4765055
2013-01-02
2014-12-19

Abstract

Mass spectrometry is fundamental to measurements of isotope ratios for applications in isotope geochemistry, geochronology, and cosmochemistry. Magnetic-sector mass spectrometers are most common because these provide the best precision in isotope ratio measurements. Where the highest precision is desired, chemical separation followed by mass spectrometric analysis is carried out with gas (noble gas and stable isotope mass spectrometry), liquid (inductively coupled plasma mass spectrometry), or solid (thermal ionization mass spectrometry) samples. Developments in in situ analysis, including ion microprobes and laser ablation inductively coupled plasma mass spectrometry, have opened up issues concerning homogeneity according to domain size, and allow ever smaller amounts of material to be analyzed. While mass spectrometry is built solidly on developments in the 20th century, there are new technologies that will push the limits in terms of precision, accuracy, and sample efficiency. Developments of new instruments based on time-of-flight mass spectrometers could open up the ultimate levels of sensitivity per sample atom.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/1/1.4765055.html;jsessionid=3n6v84sc278gi.x-aip-live-03?itemId=/content/aip/journal/rsi/84/1/10.1063/1.4765055&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Invited Review Article: Recent developments in isotope-ratio mass spectrometry for geochemistry and cosmochemistry
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/1/10.1063/1.4765055
10.1063/1.4765055
SEARCH_EXPAND_ITEM