Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. H. Zewail, “Four-dimensional electron microscopy,” Science 328(5975), 187193 (2010).
2. L. Piazza, D. J. Masiel, T. LaGrange, B. W. Reed, B. Barwick, and F. Carbone, “Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology,” Chem. Phys. 423, 7984 (2013).
3. R. K. Raman, Z. Tao, T.-R. Han, and C.-Y. Ruan, “Ultrafast imaging of photoelectron packets generated from graphite surface,” Appl. Phys. Lett. 95(18), 181108 (2009).
4. M. Centurion, P. Reckenthaeler, S. A. Trushin, F. Krausz, and E. E. Fill, “Picosecond electron deflectometry of optical-field ionized plasmas,” Nat. Photon. 2(5), 315318 (2008).
5. J. Li, X. Wang, Z. Chen, R. Clinite, S. S. Mao, P. Zhu, Z. Sheng, J. Zhang, and J. Cao, “Ultrafast electron beam imaging of femtosecond laser-induced plasma dynamics,” J. Appl. Phys. 107(8), 083305 (2010).
6. C. M. Scoby, R. K. Li, E. Threlkeld, H. To, and P. Musumeci, “Single-shot 35 fs temporal resolution electron shadowgraphy,” Appl. Phys. Lett. 102(2), 023506 (2013).
7. S. K. Sekatskii, S. V. Chekalin, A. L. Ivanov, V. O. Kompanets, Y. A. Matveets, A. G. Stepanov, and V. S. Letokhov, “Ultrahigh-spatial-resolution photoelectron projection microscopy using femtosecond lasers,” J. Exp. Theor. Phys. 88(5), 921925 (1999).
8. B. N. Mironov, S. A. Aseev, S. V. Chekalin, V. F. Ivanov, and O. L. Gribkova, “Laser photoelectron projection microscopy of an organic conducting polymer,” JETP Lett. 92(11), 779782 (2010).
9. B. Barwick, C. Corder, J. Strohaber, N. Chandler-Smith, C. Uiterwaal, and H. Batelaan, “Laser-induced ultrafast electron emission from a field emission tip,” New J. Phys. 9, 142 (2007).
10. P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96, 077401 (2006).
11. P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, “Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses,” Phys. Rev. Lett. 97, 247402 (2006).
12. C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98, 043907 (2007).
13. M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature (London) 475(7354), 7881 (2011).
14. A. Paarmann, M. Gulde, M. Müller, S. Schäfer, S. Schweda, M. Maiti, C. Xu, T. Hohage, F. Schenk, C. Ropers and R. Ernstorfer, “Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: A numerical study,” J. Appl. Phys. 112(11), 113109 (2012).
15. V. T. Binh, V. Semet, and N. Garcia, “Low-energy-electron diffraction by nano-objects in projection microscopy without magnetic shielding,” Appl. Phys. Lett. 65(19), 24932495 (1994).
16. S. A. Hilbert, B. Barwick, M. Fabrikant, C. Uiterwaal, and H. Batelaan, “A high repetition rate time-of-flight electron energy analyzer,” Appl. Phys. Lett. 91(17), 173506 (2007).
17. R. Gomer, Field Emission and Field Ionization (Harvard University Press, Cambridge, 1961).
18. J.-Y. Park, S. H. Kim, Y. D. Suh, W. G. Park, and Y. Kuk, “Low-energy electron point source microscope with position-sensitive electron energy analyzer,” Rev. Sci. Instrum. 70(11), 43044307 (1999).
19. M. Aidelsburger, F. O. Kirchner, F. Krausz, and P. Baum, “Single-electron pulses for ultrafast diffraction,” Proc. Natl. Acad. Sci. U.S.A. 107(46), 1971419719 (2010).
20. A. Gahlmann, S. T. Park, and A. H. Zewail, “Ultrashort electron pulses for diffraction, crystallography and microscopy: Theoretical and experimental resolutions,” Phys. Chem. Chem. Phys. 10, 28942909 (2008).
21. B. Barwick, D. Flannigan, and A. H. Zewail, “Photon induced near-field electron microscopy,” Nature (London) 462, 902906 (2009).
22. B. McMorran, J. D. Perreault, T. Savas, and A. Cronin, “Diffraction of 0.5 keV electrons from free-standing transmission gratings,” Ultramicroscopy 106, 356364 (2006).
23. G. Saathoff, L. Miaja-Avila, M. Aeschlimann, M. M. Murnane, and H. C. Kapteyn, “Laser-assisted photoemission from surfaces,” Phys. Rev. A 77(2), 022903 (2008).
24. P. S. Kirchmann, L. Rettig, D. Nandi, U. Lipowski, M. Wolf, and U. Bovensiepen, “A time-of-flight spectrometer for angle-resolved detection of low energy electrons in two dimensions,” Appl. Phys. A 91(2), 211217 (2008).
25. S. T. Park and A. H. Zewail, “Enhancing image contrast and slicing electron pulses in 4D near field electron microscopy,” Chem. Phys. Lett. 521, 16 (2012).
26. S. A. Hilbert, C. Uiterwaal, B. Barwick, H. Batelaan, and A. H. Zewail, “Temporal lenses for attosecond and femtosecond electron pulses,” Proc. Natl. Acad. Sci. U.S.A. 106, 1055810563 (2009).

Data & Media loading...


Article metrics loading...



By utilizing a nanometer ultrafast electron source in a point projection microscope we demonstrate that images of nanoparticles with spatial resolutions of the order of 100 nanometers can be obtained. The duration of the emission process of the photoemitted electrons used to make images is shown to be of the order of 100 fs using an autocorrelation technique. The compact geometry of this photoelectron point projection microscope does not preclude its use as a simple ultrafast electron microscope, and we use simple analytic models to estimate temporal resolutions that can be expected when using it as a pump-probe ultrafast electron microscope. These models show a significant increase in temporal resolution when comparing to ultrafast electron microscopes based on conventional designs. We also model the microscopes spectroscopic abilities to capture ultrafast phenomena such as the photon induced near field effect.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd