1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Compton scattering for spectroscopic detection of ultra-fast, high flux, broad energy range X-rays
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/11/10.1063/1.4825374
1.
1. P. Emma et al., “First lasing and operation of an angstrom-wavelength free-electron laser,” Nature Photon. 4, 641647 (2010).
http://dx.doi.org/10.1038/nphoton.2010.176
2.
2. E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 12291285 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.1229
3.
3. S. Kneip et al., “Bright spatially coherent synchrotron X-rays from a table-top source,” Nature Phys. 6, 980983 (2010).
http://dx.doi.org/10.1038/nphys1789
4.
4. R. C. Shah et al., “Coherence-based transverse measurement of synchrotron x-ray radiation from relativistic laser-plasma interaction and laser-accelerated electrons,” Phys. Rev. E 74, 045401 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.045401
5.
5. S. Cipiccia et al., “Gamma-rays from harmonically resonant betatron oscillations in a plasma wake,” Nature Phys. 7, 867871 (2011).
http://dx.doi.org/10.1038/nphys2090
6.
6. E. Esarey, S. K. Ride, and P. Sprangle, “Nonlinear Thomson scattering of intense laser-pulses from beams and plasmas,” Phys. Rev. E 48, 30033021 (1993).
http://dx.doi.org/10.1103/PhysRevE.48.3003
7.
7. K. T. Phuoc et al., “X-ray radiation from nonlinear Thomson scattering of an intense femtosecond laser on relativistic electrons in a helium plasma,” Phys. Rev. Lett. 91, 195001 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.195001
8.
8. P. Bloser and J. Ryan, “New material advance gamma-ray telescope,” SPIE Newsroom (2008).
http://dx.doi.org/10.1117/2.1200802.1058
9.
9. O. Klein and Y. Nishina, “Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac,” Z. Phys. A: Hadrons Nucl. 52, 853868 (1929).
http://dx.doi.org/10.1007/BF01366453
10.
10.Canberra Industries Inc., Germanium Detectors (2008), see http://www.canberra.com/products/detectors/pdf/Germanium-Det-SS-C36151.pdf.
11.
11. X. Llopart, R. Ballabriga, M. Campbell, L. Tlustos, and W. Wong, “Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements,” Nucl. Instrum. Methods Phys. Res. A 581, 485494 (2007).
http://dx.doi.org/10.1016/j.nima.2007.08.079
12.
12. J. Jakubek, A. Cejnarova, M. Platkevic, J. Solc, and Z. Vykydal, “Event by event energy sensitive imaging with TimePix pixel detector and its application for gamma photon tracking,” Proc. IEEE Nucl. Sci. Symp. Conf. Rec. 65–71, 34513458 (2008).
http://dx.doi.org/10.1109/NSSMIC.2008.4775081
13.
13. J. Jakubek et al., “Spectrometric properties of TimePix pixel detector for X-ray color and phase sensitive radiography,” Proc. IEEE Nucl. Sci. Symp. Conf. Rec. 1–11, 23232326 (2007).
http://dx.doi.org/10.1109/NSSMIC.2007.4436610
14.
14. A. Korn, M. Firsching, G. Anton, M. Hoheisel, and T. Michel, “Investigation of charge carrier transport and charge sharing in X-ray semiconductor pixel detectors such as Medipix2,” Nucl. Instrum. Methods Phys. Res. A 576, 239242 (2007).
http://dx.doi.org/10.1016/j.nima.2007.01.159
15.
15. A. Korn, J. Giersch, and M. Hoheisel, “Simulation of internal backscatter effects on MTF and SNR of pixelated photon-counting detectors,” Proc. SPIE 5745, 292298 (2005).
http://dx.doi.org/10.1117/12.595219
16.
16. M. Hoheisel, A. Korn, and J. Giersch, “Influence of backscattering on the spatial resolution of semiconductor X-ray detectors,” Nucl. Instrum. Methods Phys. Res. A 546, 252257 (2005).
http://dx.doi.org/10.1016/j.nima.2005.03.028
17.
17. S. Agostinelli et al., “GEANT4-a simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A 506, 250303 (2003).
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
18.
18. V. Ivanchenko et al., “Recent improvements in Geant4 electromagnetic physics models and interfaces,” Prog. Nucl. Sci. Technol. 2, 898903 (2011) (available online at http://www.aesj.or.jp/publication/pnst002/data/898-903.pdf).
19.
19. D. Maneuski et al., “Imaging and spectroscopic performance studies of pixellated CdTe Timepix detector,” J. Instrum. 7, C01038 (2012).
http://dx.doi.org/10.1088/1748-0221/7/01/C01038
20.
20. T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267270 (1979).
http://dx.doi.org/10.1103/PhysRevLett.43.267
21.
21. S. P. D. Mangles et al., “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature (London) 431, 535538 (2004).
http://dx.doi.org/10.1038/nature02939
22.
22. C. G. R. Geddes et al., “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature (London) 431, 538541 (2004).
http://dx.doi.org/10.1038/nature02900
23.
23. J. Faure et al., “A laser-plasma accelerator producing monoenergetic electron beams,” Nature (London) 431, 541544 (2004).
http://dx.doi.org/10.1038/nature02963
24.
24. C. J. Hooker et al., “Commissioning the Astra Gemini petawatt Ti:sapphire laser system,” CLEO/QELS 2008, 4–9 May 2008, San Jose, CA (IEEE, 2008), pp. 12.
25.
25. S. M. Wiggins et al., “Straight and linearly tapered capillaries produced by femtosecond laser micromachining,” J. Plasma Phys. 78, 355361 (2012).
http://dx.doi.org/10.1017/S0022377812000062
26.
26. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Pearson Prentice Hall, 2003).
27.
27. J. Jakubek, “Precise energy calibration of pixel detector working in time-over-threshold mode,” Nucl. Instrum. Methods Phys. Res. A 633, S262S266 (2011).
http://dx.doi.org/10.1016/j.nima.2010.06.183
28.
28. B. McNeil, “First light from hard X-ray laser,” Nature Photon. 3, 375377 (2009).
http://dx.doi.org/10.1038/nphoton.2009.110
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/11/10.1063/1.4825374
Loading
/content/aip/journal/rsi/84/11/10.1063/1.4825374
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/11/10.1063/1.4825374
2013-11-05
2014-07-25

Abstract

Compton side-scattering has been used to simultaneously downshift the energy of keV to MeV energy range photons while attenuating their flux to enable single-shot, spectrally resolved, measurements of high flux X-ray sources to be undertaken. To demonstrate the technique a 1 mm thick pixelated cadmium telluride detector has been used to measure spectra of Compton side-scattered radiation from a Cobalt-60 laboratory source and a high flux, high peak brilliance X-ray source of betatron radiation from a laser-plasma wakefield accelerator.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/11/1.4825374.html;jsessionid=1dk9nfmaopmbl.x-aip-live-02?itemId=/content/aip/journal/rsi/84/11/10.1063/1.4825374&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Compton scattering for spectroscopic detection of ultra-fast, high flux, broad energy range X-rays
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/11/10.1063/1.4825374
10.1063/1.4825374
SEARCH_EXPAND_ITEM