1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A multi purpose source chamber at the PLEIADES beamline at SOLEIL for spectroscopic studies of isolated species: Cold molecules, clusters, and nanoparticles
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/11/10.1063/1.4829718
1.
1. P. Liu, P. J. Ziemann, D. B. Kittelson, and P. H. McMurry, Aerosol Sci. Technol. 22, 293 (1995).
http://dx.doi.org/10.1080/02786829408959748
2.
2. P. Liu, P. J. Ziemann, D. B. Kittelson, and P. H. McMurry, Aerosol Sci. Technol. 22, 314 (1995).
http://dx.doi.org/10.1080/02786829408959749
3.
3. J. M. Headrick, P. E. Schrader, and H. A. Michelsen, J. Aerosol Sci. 58, 158 (2013).
http://dx.doi.org/10.1016/j.jaerosci.2013.01.002
4.
4. E. Antonsson, H. Bresch, R. Lewinski, B. Wassermann, T. Leisner, C. Graf, B. Langer, and E. Rühl, Chem. Phys. Lett. 559, 1 (2013).
http://dx.doi.org/10.1016/j.cplett.2012.11.051
5.
5. Clusters of Atoms and Molecules I and II, Springer Series Chemical Physics Vol. 52, edited by H. Haberland (Springer, Berlin, 1994).
6.
6. O. Hagena, Z. Phys. D: At., Mol. Clusters 4, 291 (1987).
http://dx.doi.org/10.1007/BF01436638
7.
7. G. Öhrwall, R. F. Fink, M. Tchaplyguine, L. Ojamäe, M. Lundwall, R. R. T. Marinho, A. N. de Brito, S. L. Sorensen, M. Gisselbrecht, R. Feifel, T. Rander, A. Lindblad, J. Schulz, L. J. Sæthre, N. Mårtensson, S. Svensson, and O. Björneholm, J. Chem. Phys. 123, 054310 (2005).
http://dx.doi.org/10.1063/1.1989319
8.
8. S. Peredkov, G. Öhrwall, J. Schulz, M. Lundwall, T. Rander, A. Lindblad, H. Bergersen, A. Rosso, W. Pokapanich, N. Mårtensson, S. Svensson, S. L. Sorensen, O. Björneholm, and M. Tchaplyguine, Phys. Rev. B 75, 235407 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.235407
9.
9. W. A. de Heer, Rev. Mod. Phys. 65, 611 (1993).
http://dx.doi.org/10.1103/RevModPhys.65.611
10.
10. P. Baltzer, L. Karlsson, M. Lundqvist, and B. Wannberg, Rev. Sci. Instrum. 64, 2179 (1993).
http://dx.doi.org/10.1063/1.1143957
11.
11. K. Ueda, M. Kitajima, A. De Fanis, Y. Tamenori, H. Yamaoka, H. Shindo, T. Furuta, T. Tanaka, H. Tanaka, H. Yoshida, R. Sankari, S. Aksela, S. Fritzsche, and N. M. Kabachnik, Phys. Rev. Lett. 90, 153005 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.153005
12.
12. T. D. Thomas, E. Kukk, K. Ueda, T. Ouchi, K. Sakai, T. X. Carroll, C. Nicolas, O. Travnikova, and C. Miron, Phys. Rev. Lett. 106, 193009 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.193009
13.
13. A. Lindblad, H. Bergersen, T. Rander, M. Lundwall, G. Öhrwall, M. Tchaplyguine, S. Svensson, and O. Björneholm, Phys. Chem. Chem. Phys. 8, 1899 (2006).
http://dx.doi.org/10.1039/b517083d
14.
14. L. S. Cederbaum, J. Zobeley, and F. Tarantelli, Phys. Rev. Lett. 79, 4778 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.4778
15.
15. U. Hergenhahn, J. Electron Spectrosc. Relat. Phenom. 184, 78 (2011).
http://dx.doi.org/10.1016/j.elspec.2010.12.020
16.
16. H. Bergersen, M. Abu-samha, A. Lindblad, R. R. T. Marinho, D. Céolin, G. Öhrwall, L. J. Sæthre, M. Tchaplyguine, K. J. Børve, S. Svensson, and O. Björneholm, Chem. Phys. Lett. 429, 109 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.08.034
17.
17. M. Tchaplyguine, S. Peredkov, A. Rosso, J. Schulz, G. Öhrwall, M. Lundwall, T. Rander, A. Lindblad, H. Bergersen, W. Pokapanich, S. Svensson, S. L. Sorensen, N. Mårtensson, and O. Björneholm, Eur. Phys. J. D 45, 295 (2007).
http://dx.doi.org/10.1140/epjd/e2007-00252-0
18.
18. C. Bostedt, M. Adolph, E. Eremina, M. Hoener, D. Rupp, S. Schorb, H. Thomas, A. R. B. de Castro, and T. Möller, J. Phys. B 43, 194011 (2010).
http://dx.doi.org/10.1088/0953-4075/43/19/194011
19.
19. F. Federmann, O. Björneholm, A. Beutler, and T. Möller, Phys. Rev. Lett. 73, 1549 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.1549
20.
20. P. Piseri, T. Mazza, G. Bongiorno, C. Lenardi, L. Ravagnan, F. D. Foglia, F. DiFonzo, M. Coreno, M. DeSimone, K. C. Prince, and P. Milani, New J. Phys. 8, 136 (2006).
http://dx.doi.org/10.1088/1367-2630/8/8/136
21.
21. S. Kakar, O. Björneholm, J. Weigelt, A. R. B. de Castro, L. Tröger, R. Frahm, T. Möller, A. Knop, and E. Rühl, Phys. Rev. Lett. 78, 1675 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1675
22.
22. R. Flesch, A. A. Pavlychev, J. J. Neville, J. Blumberg, M. Kuhlmann, W. Tappe, F. Senf, O. Schwarzkopf, A. P. Hitchcock, and E. Rühl, Phys. Rev. Lett. 86, 3767 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3767
23.
23. A. Pavlychev, X. Brykalova, D. Mistrov, R. Flesch, and E. Rühl, J. Electron Spectrosc. Relat. Phenom. 166–167, 45 (2008).
http://dx.doi.org/10.1016/j.elspec.2008.06.001
24.
24. P. A. Brühwiler, O. Karis, and N. Mårtensson, Rev. Mod. Phys. 74, 703 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.703
25.
25. O. Björneholm, M. Bässler, A. Ausmees, I. Hjelte, R. Feifel, H. Wang, C. Miron, M. N. Piancastelli, S. Svensson, S. L. Sorensen, F. Gel'mukhanov, and H. Ågren, Phys. Rev. Lett. 84, 2826 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2826
26.
26. C. Miron, V. Kimberg, P. Morin, C. Nicolas, N. Kosugi, S. Gavrilyuk, and F. Gel'mukhanov, Phys. Rev. Lett. 105, 093002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.093002
27.
27. A. Lindblad, V. Kimberg, J. Söderström, C. Nicolas, O. Travnikova, N. Kosugi, F. Gel'mukhanov, and C. Miron, New J. Phys. 14, 113018 (2012).
http://dx.doi.org/10.1088/1367-2630/14/11/113018
28.
28. P. Morin, M. Simon, C. Miron, N. Leclercq, and D. Hansen, J. Electron Spectrosc. Relat. Phenom. 93, 49 (1998).
http://dx.doi.org/10.1016/S0368-2048(98)00157-1
29.
29. S.-I. Nagaoka, K. Mase, A. Nakamura, M. Nagao, J. Yoshinobu, and S.-I. Tanaka, J. Chem. Phys. 117, 3961 (2002).
http://dx.doi.org/10.1063/1.1494421
30.
30. C. Miron et al., see http://www.synchrotron-soleil.fr/Recherche/LignesLumiere/PLEIADES for a detailed description of the PLEIADES beamline at Synchrotron SOLEIL (2012).
31.
31. O. Travnikova, J.-C. Liu, A. Lindblad, C. Nicolas, J. Söderström, V. Kimberg, F. Gel'mukhanov, and C. Miron, Phys. Rev. Lett. 105, 233001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.233001
32.
32. J. Söderström, A. Lindblad, A. N. Grum-Grzhimailo, O. Travnikova, C. Nicolas, S. Svensson, and C. Miron, New J. Phys. 13, 073014 (2011).
http://dx.doi.org/10.1088/1367-2630/13/7/073014
33.
33. C. Miron, C. Nicolas, O. Travnikova, P. Morin, Y. Sun, F. Gel'mukhanov, N. Kosugi, and V. Kimberg, Nat. Phys. 8, 135 (2012).
http://dx.doi.org/10.1038/nphys2159
34.
34. V. Kimberg, A. Lindblad, J. Söderström, O. Travnikova, C. Nicolas, Y. Sun, F. Gel'mukhanov, N. Kosugi, and C. Miron, Phys. Rev. X 3, 011017 (2013).
http://dx.doi.org/10.1103/PhysRevX.3.011017
35.
35. D. Céolin, C. Miron, M. Simon, and P. Morin, J. Electron Spectrosc. Relat. Phenom. 141, 171 (2004).
http://dx.doi.org/10.1016/j.elspec.2004.06.014
36.
36. X.-J. Liu, C. Nicolas, and C. Miron, Rev. Sci. Instrum. 84, 033105 (2013).
http://dx.doi.org/10.1063/1.4794440
37.
37. X.-J. Liu, C. Nicolas, E. Robert, and C. Miron, “EPICEA II: A high-energy electron-ion 3D momentum correlation setupRev. Sci. Instrum. (unpublished).
38.
38. M. F. Gharaibeh, J. M. Bizau, D. Cubaynes, S. Guilbaud, N. El Hassan, M. M. Al Shorman, C. Miron, C. Nicolas, E. Robert, C. Blancard, and B. M. McLaughlin, J. Phys. B 44, 175208 (2011).
http://dx.doi.org/10.1088/0953-4075/44/17/175208
39.
39. C. Blancard, P. Cossé, G. Faussurier, J.-M. Bizau, D. Cubaynes, N. El Hassan, S. Guilbaud, M. M. Al Shorman, E. Robert, X.-J. Liu, C. Nicolas, and C. Miron, Phys. Rev. A 85, 043408 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.043408
40.
40. L. Nadolski, J. Chinkumo, K. Ho, N. Leclercq, M. Ounsy, and S. Petit, in Particle Accelerator Conference, 2005, Proceedings of the PAC 2005 (IEEE, 2005), pp. 481483.
41.
41. M. Tchaplyguine, S. Peredkov, H. Svensson, J. Schulz, G. Öhrwall, M. Lundwall, T. Rander, A. Lindblad, H. Bergersen, S. Svensson, M. Gisselbrecht, S. L. Sorensen, L. Gridneva, N. Mårtensson, and O. Björneholm, Rev. Sci. Instrum. 77, 033106 (2006).
http://dx.doi.org/10.1063/1.2185150
42.
42. G. D. Ulrich, Chem. Eng. News 62, 22 (1984).
http://dx.doi.org/10.1021/cen-v062n032.p022
43.
43.See http://www.tsi.com for the technical specifications of the different apparatus used in the aerosol production and characterization chain (2012).
44.
44. J. T. Jayne, D. C. Leard, X. F. Zhang, P. Davidovits, K. A. Smith, C. E. Kolb, and D. R. Worsnop, Aerosol Sci. Technol. 33, 49 (2000).
http://dx.doi.org/10.1080/027868200410840
45.
45. X. Zhang, K. Smith, D. Worsnop, J. Jimenez, J. Jayne, C. Kolb, J. Morris, and P. Davidovits, Aerosol Sci. Technol. 38, 619 (2004).
http://dx.doi.org/10.1080/02786820490479833
46.
46.See http://www.okcc.com for the technical specifications of the limiting orifices used (2012).
47.
47. J. Meinen, S. Khasminskaya, M. Eritt, T. Leisner, E. Antonsson, B. Langer, and E. Rühl, Rev. Sci. Instrum. 81, 085107 (2010).
http://dx.doi.org/10.1063/1.3475154
48.
48. W. Stöber, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26, 62 (1968).
http://dx.doi.org/10.1016/0021-9797(68)90272-5
49.
49. A. Philipse, Colloid Polym. Sci. 266, 1174 (1988).
http://dx.doi.org/10.1007/BF01414407
50.
50. G. H. Bogush and C. F. Zukoski IV, J. Colloid Interface Sci. 142, 1 (1991).
http://dx.doi.org/10.1016/0021-9797(91)90029-8
51.
51. S. Hüfner, Photoelectron Spectroscopy: Principles and Applications (Springer, Berlin, 1995).
52.
52. E. R. Mysak, D. E. Starr, K. R. Wilson, and H. Bluhm, Rev. Sci. Instrum. 81, 016106 (2010).
http://dx.doi.org/10.1063/1.3276714
53.
53. Z. H. Lu, M. J. Graham, D. T. Jiang, and K. H. Tan, Appl. Phys. Lett. 63, 2941 (1993).
http://dx.doi.org/10.1063/1.110279
54.
54. Z. H. Lu, J. P. McCaffrey, B. Brar, G. D. Wilk, R. M. Wallace, L. C. Feldman, and S. P. Tay, Appl. Phys. Lett. 71, 2764 (1997).
http://dx.doi.org/10.1063/1.120438
55.
55. J. Söderström, N. Ottosson, W. Pokapanich, G. Öhrwall, and O. Björneholm, J. Electron Spectrosc. Relat. Phenom. 184, 375 (2011).
http://dx.doi.org/10.1016/j.elspec.2011.02.006
56.
56. P. Baltzer, L. Karlsson, and B. Wannberg, Phys. Rev. A 46, 315 (1992).
http://dx.doi.org/10.1103/PhysRevA.46.315
57.
57. R. Karnbach, M. Joppien, J. Stapelfeldt, J. Wörmer, and T. Möller, Rev. Sci. Instrum. 64, 2838 (1993).
http://dx.doi.org/10.1063/1.1144371
58.
58. U. Buck and R. Krohne, J. Chem. Phys. 105, 5408 (1996).
http://dx.doi.org/10.1063/1.472406
59.
59. A. Lindblad, A Treatise on the Geometric and Electronic Structure of Clusters: Investigated by Synchrotron Radiation Based Electron Spectroscopies (Acta Universitatis Upsaliensis, Uppsala, 2008).
60.
60. N. Ramsey, Molecular Beams (Oxford University Press, 1986).
61.
61. T. D. Thomas, E. Kukk, H. Fukuzawa, K. Ueda, R. Püttner, Y. Tamenori, T. Asahina, N. Kuze, H. Kato, M. Hoshino, H. Tanaka, M. Meyer, J. Plenge, A. Wirsing, E. Serdaroglu, R. Flesch, E. Rühl, S. Gavrilyuk, F. Gel'mukhanov, A. Lindblad, and L. J. Sæthre, Phys. Rev. A 79, 022506 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.022506
62.
62. T. D. Thomas, E. Kukk, T. Ouchi, A. Yamada, H. Fukuzawa, K. Ueda, R. Püttner, I. Higuchi, Y. Tamenori, T. Asahina, N. Kuze, H. Kato, M. Hoshino, H. Tanaka, A. Lindblad, and L. J. Sæthre, J. Chem. Phys. 133, 174312 (2010).
http://dx.doi.org/10.1063/1.3503658
63.
63. E. Kukk, K. Ueda, and C. Miron, J. Electron Spectrosc. Relat. Phenom. 185, 278 (2012).
http://dx.doi.org/10.1016/j.elspec.2012.05.006
64.
64. C. Miron and P. Morin, Nucl. Instrum. Meth. A 601, 66 (2009).
http://dx.doi.org/10.1016/j.nima.2008.12.104
65.
65. M. Lundwall, H. Bergersen, A. Lindblad, G. Öhrwall, M. Tchaplyguine, S. Svensson, and O. Björneholm, Phys. Rev. A 74, 043206 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.043206
66.
66.See http://www.beamdynamicsinc.com for technical specifications of skimmers models 40.5,2 and 16.3 used in our MPSC chamber (2012).
67.
67.See http://www.lairdtech.com/ for the technical specifications of the Peltier elements used with the convergent/divergent nozzle (2012).
68.
68.See http://www.hamiltoncompany.com/ for the technical specification of the N needle P/N 91021/00 (21/51/pst3/tapN) used in the doping stage (2012).
69.
69. M. Patanen, C. Nicolas, X.-J. Liu, O. Travnikova, and C. Miron, Phys. Chem. Chem. Phys. 15, 10112 (2013).
http://dx.doi.org/10.1039/c3cp50249j
70.
70. A. Lindblad, T. Rander, I. Bradeanu, G. Öhrwall, O. Björneholm, M. Mucke, V. Ulrich, T. Lischke, and U. Hergenhahn, Phys. Rev. B 83, 125414 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.125414
71.
71. M. Jurvansuu, A. Kivimäki, and S. Aksela, Phys. Rev. A 64, 012502 (2001).
http://dx.doi.org/10.1103/PhysRevA.64.012502
72.
72. E. Kukk, see http://www.physics.utu.fi/en/research/material_science/Fitting.html for information about the fitting package used.
73.
73. H. Bergersen, R. R. T. Marinho, W. Pokapanich, A. Lindblad, O. Björneholm, L. J. Sæthre, and G. Öhrwall, J. Phys.: Condens. Matter 19, 326101 (2007).
http://dx.doi.org/10.1088/0953-8984/19/32/326101
74.
74. A Compendium on Beam Transport and Beam Diagnostic Methods for Free Electron Lasers: IRUVX-PP Experts' Report, edited by A. Lindblad, S. Svensson, and K. Tiedtke (DESY, Hamburg, 2011).
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/11/10.1063/1.4829718
Loading
/content/aip/journal/rsi/84/11/10.1063/1.4829718
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/11/10.1063/1.4829718
2013-11-14
2014-09-21

Abstract

This paper describes the philosophy and design goals regarding the construction of a versatile sample environment: a source capable of producing beams of atoms, molecules, clusters, and nanoparticles in view of studying their interaction with short wavelength (vacuum ultraviolet and x-ray) synchrotron radiation. In the design, specific care has been taken of (a) the use standard components, (b) ensuring modularity, i.e., that swiftly switching between different experimental configurations was possible. To demonstrate the efficiency of the design, proof-of-principle experiments have been conducted by recording x-ray absorption and photoelectron spectra from isolated nanoparticles (SiO) and free mixed clusters (Ar/Xe). The results from those experiments are showcased and briefly discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/11/1.4829718.html;jsessionid=52smkdsom0f8f.x-aip-live-03?itemId=/content/aip/journal/rsi/84/11/10.1063/1.4829718&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A multi purpose source chamber at the PLEIADES beamline at SOLEIL for spectroscopic studies of isolated species: Cold molecules, clusters, and nanoparticles
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/11/10.1063/1.4829718
10.1063/1.4829718
SEARCH_EXPAND_ITEM