1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A multi purpose source chamber at the PLEIADES beamline at SOLEIL for spectroscopic studies of isolated species: Cold molecules, clusters, and nanoparticles
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/11/10.1063/1.4829718
1.
1. P. Liu, P. J. Ziemann, D. B. Kittelson, and P. H. McMurry, Aerosol Sci. Technol. 22, 293 (1995).
http://dx.doi.org/10.1080/02786829408959748
2.
2. P. Liu, P. J. Ziemann, D. B. Kittelson, and P. H. McMurry, Aerosol Sci. Technol. 22, 314 (1995).
http://dx.doi.org/10.1080/02786829408959749
3.
3. J. M. Headrick, P. E. Schrader, and H. A. Michelsen, J. Aerosol Sci. 58, 158 (2013).
http://dx.doi.org/10.1016/j.jaerosci.2013.01.002
4.
4. E. Antonsson, H. Bresch, R. Lewinski, B. Wassermann, T. Leisner, C. Graf, B. Langer, and E. Rühl, Chem. Phys. Lett. 559, 1 (2013).
http://dx.doi.org/10.1016/j.cplett.2012.11.051
5.
5. Clusters of Atoms and Molecules I and II, Springer Series Chemical Physics Vol. 52, edited by H. Haberland (Springer, Berlin, 1994).
6.
6. O. Hagena, Z. Phys. D: At., Mol. Clusters 4, 291 (1987).
http://dx.doi.org/10.1007/BF01436638
7.
7. G. Öhrwall, R. F. Fink, M. Tchaplyguine, L. Ojamäe, M. Lundwall, R. R. T. Marinho, A. N. de Brito, S. L. Sorensen, M. Gisselbrecht, R. Feifel, T. Rander, A. Lindblad, J. Schulz, L. J. Sæthre, N. Mårtensson, S. Svensson, and O. Björneholm, J. Chem. Phys. 123, 054310 (2005).
http://dx.doi.org/10.1063/1.1989319
8.
8. S. Peredkov, G. Öhrwall, J. Schulz, M. Lundwall, T. Rander, A. Lindblad, H. Bergersen, A. Rosso, W. Pokapanich, N. Mårtensson, S. Svensson, S. L. Sorensen, O. Björneholm, and M. Tchaplyguine, Phys. Rev. B 75, 235407 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.235407
9.
9. W. A. de Heer, Rev. Mod. Phys. 65, 611 (1993).
http://dx.doi.org/10.1103/RevModPhys.65.611
10.
10. P. Baltzer, L. Karlsson, M. Lundqvist, and B. Wannberg, Rev. Sci. Instrum. 64, 2179 (1993).
http://dx.doi.org/10.1063/1.1143957
11.
11. K. Ueda, M. Kitajima, A. De Fanis, Y. Tamenori, H. Yamaoka, H. Shindo, T. Furuta, T. Tanaka, H. Tanaka, H. Yoshida, R. Sankari, S. Aksela, S. Fritzsche, and N. M. Kabachnik, Phys. Rev. Lett. 90, 153005 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.153005
12.
12. T. D. Thomas, E. Kukk, K. Ueda, T. Ouchi, K. Sakai, T. X. Carroll, C. Nicolas, O. Travnikova, and C. Miron, Phys. Rev. Lett. 106, 193009 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.193009
13.
13. A. Lindblad, H. Bergersen, T. Rander, M. Lundwall, G. Öhrwall, M. Tchaplyguine, S. Svensson, and O. Björneholm, Phys. Chem. Chem. Phys. 8, 1899 (2006).
http://dx.doi.org/10.1039/b517083d
14.
14. L. S. Cederbaum, J. Zobeley, and F. Tarantelli, Phys. Rev. Lett. 79, 4778 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.4778
15.
15. U. Hergenhahn, J. Electron Spectrosc. Relat. Phenom. 184, 78 (2011).
http://dx.doi.org/10.1016/j.elspec.2010.12.020
16.
16. H. Bergersen, M. Abu-samha, A. Lindblad, R. R. T. Marinho, D. Céolin, G. Öhrwall, L. J. Sæthre, M. Tchaplyguine, K. J. Børve, S. Svensson, and O. Björneholm, Chem. Phys. Lett. 429, 109 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.08.034
17.
17. M. Tchaplyguine, S. Peredkov, A. Rosso, J. Schulz, G. Öhrwall, M. Lundwall, T. Rander, A. Lindblad, H. Bergersen, W. Pokapanich, S. Svensson, S. L. Sorensen, N. Mårtensson, and O. Björneholm, Eur. Phys. J. D 45, 295 (2007).
http://dx.doi.org/10.1140/epjd/e2007-00252-0
18.
18. C. Bostedt, M. Adolph, E. Eremina, M. Hoener, D. Rupp, S. Schorb, H. Thomas, A. R. B. de Castro, and T. Möller, J. Phys. B 43, 194011 (2010).
http://dx.doi.org/10.1088/0953-4075/43/19/194011
19.
19. F. Federmann, O. Björneholm, A. Beutler, and T. Möller, Phys. Rev. Lett. 73, 1549 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.1549
20.
20. P. Piseri, T. Mazza, G. Bongiorno, C. Lenardi, L. Ravagnan, F. D. Foglia, F. DiFonzo, M. Coreno, M. DeSimone, K. C. Prince, and P. Milani, New J. Phys. 8, 136 (2006).
http://dx.doi.org/10.1088/1367-2630/8/8/136
21.
21. S. Kakar, O. Björneholm, J. Weigelt, A. R. B. de Castro, L. Tröger, R. Frahm, T. Möller, A. Knop, and E. Rühl, Phys. Rev. Lett. 78, 1675 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1675
22.
22. R. Flesch, A. A. Pavlychev, J. J. Neville, J. Blumberg, M. Kuhlmann, W. Tappe, F. Senf, O. Schwarzkopf, A. P. Hitchcock, and E. Rühl, Phys. Rev. Lett. 86, 3767 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3767
23.
23. A. Pavlychev, X. Brykalova, D. Mistrov, R. Flesch, and E. Rühl, J. Electron Spectrosc. Relat. Phenom. 166–167, 45 (2008).
http://dx.doi.org/10.1016/j.elspec.2008.06.001
24.
24. P. A. Brühwiler, O. Karis, and N. Mårtensson, Rev. Mod. Phys. 74, 703 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.703
25.
25. O. Björneholm, M. Bässler, A. Ausmees, I. Hjelte, R. Feifel, H. Wang, C. Miron, M. N. Piancastelli, S. Svensson, S. L. Sorensen, F. Gel'mukhanov, and H. Ågren, Phys. Rev. Lett. 84, 2826 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2826
26.
26. C. Miron, V. Kimberg, P. Morin, C. Nicolas, N. Kosugi, S. Gavrilyuk, and F. Gel'mukhanov, Phys. Rev. Lett. 105, 093002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.093002
27.
27. A. Lindblad, V. Kimberg, J. Söderström, C. Nicolas, O. Travnikova, N. Kosugi, F. Gel'mukhanov, and C. Miron, New J. Phys. 14, 113018 (2012).
http://dx.doi.org/10.1088/1367-2630/14/11/113018
28.
28. P. Morin, M. Simon, C. Miron, N. Leclercq, and D. Hansen, J. Electron Spectrosc. Relat. Phenom. 93, 49 (1998).
http://dx.doi.org/10.1016/S0368-2048(98)00157-1
29.
29. S.-I. Nagaoka, K. Mase, A. Nakamura, M. Nagao, J. Yoshinobu, and S.-I. Tanaka, J. Chem. Phys. 117, 3961 (2002).
http://dx.doi.org/10.1063/1.1494421
30.
30. C. Miron et al., see http://www.synchrotron-soleil.fr/Recherche/LignesLumiere/PLEIADES for a detailed description of the PLEIADES beamline at Synchrotron SOLEIL (2012).
31.
31. O. Travnikova, J.-C. Liu, A. Lindblad, C. Nicolas, J. Söderström, V. Kimberg, F. Gel'mukhanov, and C. Miron, Phys. Rev. Lett. 105, 233001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.233001
32.
32. J. Söderström, A. Lindblad, A. N. Grum-Grzhimailo, O. Travnikova, C. Nicolas, S. Svensson, and C. Miron, New J. Phys. 13, 073014 (2011).
http://dx.doi.org/10.1088/1367-2630/13/7/073014
33.
33. C. Miron, C. Nicolas, O. Travnikova, P. Morin, Y. Sun, F. Gel'mukhanov, N. Kosugi, and V. Kimberg, Nat. Phys. 8, 135 (2012).
http://dx.doi.org/10.1038/nphys2159
34.
34. V. Kimberg, A. Lindblad, J. Söderström, O. Travnikova, C. Nicolas, Y. Sun, F. Gel'mukhanov, N. Kosugi, and C. Miron, Phys. Rev. X 3, 011017 (2013).
http://dx.doi.org/10.1103/PhysRevX.3.011017
35.
35. D. Céolin, C. Miron, M. Simon, and P. Morin, J. Electron Spectrosc. Relat. Phenom. 141, 171 (2004).
http://dx.doi.org/10.1016/j.elspec.2004.06.014
36.
36. X.-J. Liu, C. Nicolas, and C. Miron, Rev. Sci. Instrum. 84, 033105 (2013).
http://dx.doi.org/10.1063/1.4794440
37.
37. X.-J. Liu, C. Nicolas, E. Robert, and C. Miron, “EPICEA II: A high-energy electron-ion 3D momentum correlation setupRev. Sci. Instrum. (unpublished).
38.
38. M. F. Gharaibeh, J. M. Bizau, D. Cubaynes, S. Guilbaud, N. El Hassan, M. M. Al Shorman, C. Miron, C. Nicolas, E. Robert, C. Blancard, and B. M. McLaughlin, J. Phys. B 44, 175208 (2011).
http://dx.doi.org/10.1088/0953-4075/44/17/175208
39.
39. C. Blancard, P. Cossé, G. Faussurier, J.-M. Bizau, D. Cubaynes, N. El Hassan, S. Guilbaud, M. M. Al Shorman, E. Robert, X.-J. Liu, C. Nicolas, and C. Miron, Phys. Rev. A 85, 043408 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.043408
40.
40. L. Nadolski, J. Chinkumo, K. Ho, N. Leclercq, M. Ounsy, and S. Petit, in Particle Accelerator Conference, 2005, Proceedings of the PAC 2005 (IEEE, 2005), pp. 481483.
41.
41. M. Tchaplyguine, S. Peredkov, H. Svensson, J. Schulz, G. Öhrwall, M. Lundwall, T. Rander, A. Lindblad, H. Bergersen, S. Svensson, M. Gisselbrecht, S. L. Sorensen, L. Gridneva, N. Mårtensson, and O. Björneholm, Rev. Sci. Instrum. 77, 033106 (2006).
http://dx.doi.org/10.1063/1.2185150
42.
42. G. D. Ulrich, Chem. Eng. News 62, 22 (1984).
http://dx.doi.org/10.1021/cen-v062n032.p022
43.
43.See http://www.tsi.com for the technical specifications of the different apparatus used in the aerosol production and characterization chain (2012).
44.
44. J. T. Jayne, D. C. Leard, X. F. Zhang, P. Davidovits, K. A. Smith, C. E. Kolb, and D. R. Worsnop, Aerosol Sci. Technol. 33, 49 (2000).
http://dx.doi.org/10.1080/027868200410840
45.
45. X. Zhang, K. Smith, D. Worsnop, J. Jimenez, J. Jayne, C. Kolb, J. Morris, and P. Davidovits, Aerosol Sci. Technol. 38, 619 (2004).
http://dx.doi.org/10.1080/02786820490479833
46.
46.See http://www.okcc.com for the technical specifications of the limiting orifices used (2012).
47.
47. J. Meinen, S. Khasminskaya, M. Eritt, T. Leisner, E. Antonsson, B. Langer, and E. Rühl, Rev. Sci. Instrum. 81, 085107 (2010).
http://dx.doi.org/10.1063/1.3475154
48.
48. W. Stöber, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26, 62 (1968).
http://dx.doi.org/10.1016/0021-9797(68)90272-5
49.
49. A. Philipse, Colloid Polym. Sci. 266, 1174 (1988).
http://dx.doi.org/10.1007/BF01414407
50.
50. G. H. Bogush and C. F. Zukoski IV, J. Colloid Interface Sci. 142, 1 (1991).
http://dx.doi.org/10.1016/0021-9797(91)90029-8
51.
51. S. Hüfner, Photoelectron Spectroscopy: Principles and Applications (Springer, Berlin, 1995).
52.
52. E. R. Mysak, D. E. Starr, K. R. Wilson, and H. Bluhm, Rev. Sci. Instrum. 81, 016106 (2010).
http://dx.doi.org/10.1063/1.3276714
53.
53. Z. H. Lu, M. J. Graham, D. T. Jiang, and K. H. Tan, Appl. Phys. Lett. 63, 2941 (1993).
http://dx.doi.org/10.1063/1.110279
54.
54. Z. H. Lu, J. P. McCaffrey, B. Brar, G. D. Wilk, R. M. Wallace, L. C. Feldman, and S. P. Tay, Appl. Phys. Lett. 71, 2764 (1997).
http://dx.doi.org/10.1063/1.120438
55.
55. J. Söderström, N. Ottosson, W. Pokapanich, G. Öhrwall, and O. Björneholm, J. Electron Spectrosc. Relat. Phenom. 184, 375 (2011).
http://dx.doi.org/10.1016/j.elspec.2011.02.006
56.
56. P. Baltzer, L. Karlsson, and B. Wannberg, Phys. Rev. A 46, 315 (1992).
http://dx.doi.org/10.1103/PhysRevA.46.315
57.
57. R. Karnbach, M. Joppien, J. Stapelfeldt, J. Wörmer, and T. Möller, Rev. Sci. Instrum. 64, 2838 (1993).
http://dx.doi.org/10.1063/1.1144371
58.
58. U. Buck and R. Krohne, J. Chem. Phys. 105, 5408 (1996).
http://dx.doi.org/10.1063/1.472406
59.
59. A. Lindblad, A Treatise on the Geometric and Electronic Structure of Clusters: Investigated by Synchrotron Radiation Based Electron Spectroscopies (Acta Universitatis Upsaliensis, Uppsala, 2008).
60.
60. N. Ramsey, Molecular Beams (Oxford University Press, 1986).
61.
61. T. D. Thomas, E. Kukk, H. Fukuzawa, K. Ueda, R. Püttner, Y. Tamenori, T. Asahina, N. Kuze, H. Kato, M. Hoshino, H. Tanaka, M. Meyer, J. Plenge, A. Wirsing, E. Serdaroglu, R. Flesch, E. Rühl, S. Gavrilyuk, F. Gel'mukhanov, A. Lindblad, and L. J. Sæthre, Phys. Rev. A 79, 022506 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.022506
62.
62. T. D. Thomas, E. Kukk, T. Ouchi, A. Yamada, H. Fukuzawa, K. Ueda, R. Püttner, I. Higuchi, Y. Tamenori, T. Asahina, N. Kuze, H. Kato, M. Hoshino, H. Tanaka, A. Lindblad, and L. J. Sæthre, J. Chem. Phys. 133, 174312 (2010).
http://dx.doi.org/10.1063/1.3503658
63.
63. E. Kukk, K. Ueda, and C. Miron, J. Electron Spectrosc. Relat. Phenom. 185, 278 (2012).
http://dx.doi.org/10.1016/j.elspec.2012.05.006
64.
64. C. Miron and P. Morin, Nucl. Instrum. Meth. A 601, 66 (2009).
http://dx.doi.org/10.1016/j.nima.2008.12.104
65.
65. M. Lundwall, H. Bergersen, A. Lindblad, G. Öhrwall, M. Tchaplyguine, S. Svensson, and O. Björneholm, Phys. Rev. A 74, 043206 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.043206
66.
66.See http://www.beamdynamicsinc.com for technical specifications of skimmers models 40.5,2 and 16.3 used in our MPSC chamber (2012).
67.
67.See http://www.lairdtech.com/ for the technical specifications of the Peltier elements used with the convergent/divergent nozzle (2012).
68.
68.See http://www.hamiltoncompany.com/ for the technical specification of the N needle P/N 91021/00 (21/51/pst3/tapN) used in the doping stage (2012).
69.
69. M. Patanen, C. Nicolas, X.-J. Liu, O. Travnikova, and C. Miron, Phys. Chem. Chem. Phys. 15, 10112 (2013).
http://dx.doi.org/10.1039/c3cp50249j
70.
70. A. Lindblad, T. Rander, I. Bradeanu, G. Öhrwall, O. Björneholm, M. Mucke, V. Ulrich, T. Lischke, and U. Hergenhahn, Phys. Rev. B 83, 125414 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.125414
71.
71. M. Jurvansuu, A. Kivimäki, and S. Aksela, Phys. Rev. A 64, 012502 (2001).
http://dx.doi.org/10.1103/PhysRevA.64.012502
72.
72. E. Kukk, see http://www.physics.utu.fi/en/research/material_science/Fitting.html for information about the fitting package used.
73.
73. H. Bergersen, R. R. T. Marinho, W. Pokapanich, A. Lindblad, O. Björneholm, L. J. Sæthre, and G. Öhrwall, J. Phys.: Condens. Matter 19, 326101 (2007).
http://dx.doi.org/10.1088/0953-8984/19/32/326101
74.
74. A Compendium on Beam Transport and Beam Diagnostic Methods for Free Electron Lasers: IRUVX-PP Experts' Report, edited by A. Lindblad, S. Svensson, and K. Tiedtke (DESY, Hamburg, 2011).
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/11/10.1063/1.4829718
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Top panel shows a cut through the view of the nanoparticle-setup connected to the photoelectron spectroscopy analyzer chamber. Note the extra differential pumping stage between the source chamber and the analyzer chamber, as compared to the cluster/molecular beam configuration shown in the lower panel. Both panels have the X-ray beam traveling out of the figure. The arrows indicate the knife-edge of the CF200 coupling flange defining the origin for the distances in Table I . Differential walls 1 and 2, as referred to in Table I , have been highlighted with red and black solid lines, respectively.

Image of FIG. 2.

Click to view

FIG. 2.

Schematic of the aerodynamic lens. The nanoparticles enter through the valve at the left and fly through the insertion tube into the relaxation chamber (yellow, at the left)—the pressure in this region may be regulated with an external pumping system. After the relaxation chamber a modularly built aerodynamic lens system focuses the nanoparticle beam. Up to two stages of differential pumping may be used as shown (brown), with conical skimmers maintaining the pressure difference between the stages. The zoom-in depicts the aerodynamic lens system.

Image of FIG. 3.

Click to view

FIG. 3.

Absorption spectra obtained by recording total electron yield with a multi channel plate based detector as function of photon energy, for three sizes of SiO nanoparticles. The absorption curves of 44, 90, and 185 nm sizes of SiO nanoparticles have been shifted one to the other.

Image of FIG. 4.

Click to view

FIG. 4.

Photoemission spectra of the carrier gas N with (red curve) and without (black curve) the SiO nanoparticles. The insets show a zoom of the region around the Si 2p feature and the difference spectrum, which contains signal originating mostly from the SiO nanoparticles. The kinetic energy scale is not calibrated, see text for additional details.

Image of FIG. 5.

Click to view

FIG. 5.

Total electron yield recorded with a multi channel plate based detector while moving the aerodynamic lens in the vertical direction. The FWHM is <0.28 mm, which is predominantly related to the width of the particle beam as the photon beam width is much smaller.

Image of FIG. 6.

Click to view

FIG. 6.

Details on various parts of the cluster/molecular beam assembly. Labels are referred to in the text.

Image of FIG. 7.

Click to view

FIG. 7.

Core level photoelectron spectra mixed argon/xenon clusters. The monomer feature from the uncondensed atoms in the beam (blue) is the higher binding energy feature in both spectra. At lower binding energies cluster spectral features can be found. In the Ar case the filled (green) feature stems from surface atoms in the cluster and the (red) hatched feature from atoms in the bulk. For the Xe spectrum the corresponding markings exhibit the Xe surface atoms and interfacial atoms, respectively.

Tables

Generic image for table

Click to view

Table I.

Diameters and lengths of the differential walls. The lengths are relative to the knife edge side of the MPSC CF200 coupling flange (see the arrow in Figure 1 ).

Loading

Article metrics loading...

/content/aip/journal/rsi/84/11/10.1063/1.4829718
2013-11-14
2014-04-19

Abstract

This paper describes the philosophy and design goals regarding the construction of a versatile sample environment: a source capable of producing beams of atoms, molecules, clusters, and nanoparticles in view of studying their interaction with short wavelength (vacuum ultraviolet and x-ray) synchrotron radiation. In the design, specific care has been taken of (a) the use standard components, (b) ensuring modularity, i.e., that swiftly switching between different experimental configurations was possible. To demonstrate the efficiency of the design, proof-of-principle experiments have been conducted by recording x-ray absorption and photoelectron spectra from isolated nanoparticles (SiO) and free mixed clusters (Ar/Xe). The results from those experiments are showcased and briefly discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/11/1.4829718.html;jsessionid=1qjaicqsfq82q.x-aip-live-06?itemId=/content/aip/journal/rsi/84/11/10.1063/1.4829718&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A multi purpose source chamber at the PLEIADES beamline at SOLEIL for spectroscopic studies of isolated species: Cold molecules, clusters, and nanoparticles
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/11/10.1063/1.4829718
10.1063/1.4829718
SEARCH_EXPAND_ITEM