1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Invited Review Article: Methods for imaging weak-phase objects in electron microscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/11/10.1063/1.4830355
1.
1. K. H. Taylor and R. M. Glaeser, J. Struct. Biol. 163, 214 (2008).
http://dx.doi.org/10.1016/j.jsb.2008.06.004
2.
2. L. A. Baker, E. A. Smith, S. A. Bueler, and J. L. Rubinstein, J. Struct. Biol. 169, 431 (2010).
http://dx.doi.org/10.1016/j.jsb.2009.11.014
3.
3. R. M. Glaeser, K. Downing, D. DeRosier, W. Chiu, and J. Frank, Electron Crystallography of Biological Macromolecules (Oxford University Press, 2007).
4.
4. D. Gabor, Nature (London) 161, 777 (1948).
http://dx.doi.org/10.1038/161777a0
5.
5. N. Grigorieff and S. C. Harrison, Curr. Opin. Struct. Biol. 21, 265 (2011).
http://dx.doi.org/10.1016/j.sbi.2011.01.008
6.
6. D. J. Mills, S. Vitt, M. Strauss, S. Shima, and J. Vonck, eLife 2, e00218 (2013).
http://dx.doi.org/10.7554/eLife.00218
7.
7. M. G. Campbell et al., Structure 20, 1823 (2012).
http://dx.doi.org/10.1016/j.str.2012.08.026
8.
8. X.-c. Bai, I. S. Fernandez, G. McMullan, and S. H. Scheres, eLife 2, e00461 (2013).
http://dx.doi.org/10.7554/eLife.00461
9.
9. X. Li, P. Mooney, S. Zheng, C. R. Booth, M. B. Braunfeld, S. Gubbens, D. A. Agard, and Y. Cheng, Nat. Methods 10, 584 (2013).
http://dx.doi.org/10.1038/nmeth.2472
10.
10. G. C. Lander, E. Estrin, M. E. Matyskiela, C. Bashore, E. Nogales, and A. Martin, Nature (London) 482, 186 (2012).
http://dx.doi.org/10.1038/nature10774
11.
11. F. Beck et al., Proc. Natl. Acad. Sci. U.S.A. 109, 14870 (2012).
http://dx.doi.org/10.1073/pnas.1213333109
12.
12. P. C. A. da Fonseca, J. He, and E. P. Morris, Mol. Cell. 46, 54 (2012).
http://dx.doi.org/10.1016/j.molcel.2012.03.026
13.
13. R. Henderson, Q. Rev. Biophys. 28, 171 (1995).
http://dx.doi.org/10.1017/S003358350000305X
14.
14. R. M. Glaeser, J. Struct. Biol. 128, 3 (1999).
http://dx.doi.org/10.1006/jsbi.1999.4172
15.
15. P. B. Rosenthal and R. Henderson, J. Mol. Biol. 333, 721 (2003).
http://dx.doi.org/10.1016/j.jmb.2003.07.013
16.
16. N. Guerrini, R. Turchetta, G. Van Hoften, R. Henderson, G. McMullan, and A. R. Faruqi, J. Instrum. 6, C03003 (2011).
http://dx.doi.org/10.1088/1748-0221/6/03/C03003
17.
17. A. C. Milazzo et al., J. Struct. Biol. 176, 404 (2011).
http://dx.doi.org/10.1016/j.jsb.2011.09.002
18.
18. M. Battaglia, D. Contarato, P. Denes, D. Doering, T. Duden, B. Krieger, P. Giubilato, D. Gnani, and V. Radmilovic, Nucl. Instrum. Methods Phys. Res. A 622, 669 (2010).
http://dx.doi.org/10.1016/j.nima.2010.07.066
19.
19. F. Zernike, Science 121, 345 (1955).
http://dx.doi.org/10.1126/science.121.3141.345
20.
20. K. H. Downing and R. M. Glaeser, Ultramicroscopy 108, 921 (2008).
http://dx.doi.org/10.1016/j.ultramic.2008.03.004
21.
21. J. R. Fienup, Appl. Opt. 21, 2758 (1982).
http://dx.doi.org/10.1364/AO.21.002758
22.
22. J. C. H. Spence, U. Weierstall, and H. N. Chapman, Rep. Prog. Phys. 75, 102601 (2012).
http://dx.doi.org/10.1088/0034-4885/75/10/102601
23.
23. J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang, and L. A. Nagahara, Science 300, 1419 (2003).
http://dx.doi.org/10.1126/science.1083887
24.
24. J. M. Cowley, J. Electron Microsc. 45, 3 (1996).
http://dx.doi.org/10.1093/oxfordjournals.jmicro.a023409
25.
25. W. Hoppe, Ultramicroscopy 10, 187 (1982).
http://dx.doi.org/10.1016/0304-3991(82)90038-9
26.
26. J. M. Rodenburg, in Advances in Imaging and Electron Physics, edited by P. W. Hawkes (Elsevier, 2008), Vol. 150, p. 87.
27.
27. J. Lepault, F. P. Booy, and J. Dubochet, J. Microsc. (Oxford) 129, 89 (1983).
http://dx.doi.org/10.1111/j.1365-2818.1983.tb04163.x
28.
28. P. Simon, H. Lichte, P. Formanek, M. Lehmann, R. Huhle, W. Carrillo-Cabrera, A. Harscher, and H. Ehrlich, Micron 39, 229 (2008).
http://dx.doi.org/10.1016/j.micron.2006.11.012
29.
29. G. H. Curtis and R. P. Ferrier, J. Phys. D 2, 1035 (1969).
http://dx.doi.org/10.1088/0022-3727/2/7/312
30.
30. J. Sickmann, P. Formanek, M. Linck, U. Muehle, and H. Lichte, Ultramicroscopy 111, 290 (2011).
http://dx.doi.org/10.1016/j.ultramic.2010.12.016
31.
31. H. Boersch, Z. Naturforsch., A: Phys. Sci. 2, 615 (1947).
32.
32. F. Thon and D. Willasch, Mikroskopie 28, 364 (1973).
33.
33. H. G. Badde and L. Reimer, Z. Naturforsch. A 25, 760 (1970).
34.
34. R. Danev, R. M. Glaeser, and K. Nagayama, Ultramicroscopy 109, 312 (2009).
http://dx.doi.org/10.1016/j.ultramic.2008.12.006
35.
35. R. J. Hall, E. Nogales, and R. M. Glaeser, J. Struct. Biol. 174, 468 (2011).
http://dx.doi.org/10.1016/j.jsb.2011.03.020
36.
36. R. Danev and K. Nagayama, Ultramicroscopy 88, 243 (2001).
http://dx.doi.org/10.1016/S0304-3991(01)00088-2
37.
37. F. Hosokawa, R. Danev, Y. Arai, and K. Nagayama, J. Electron Microsc. 54, 317 (2005).
http://dx.doi.org/10.1093/jmicro/dfi049
38.
38. R. Danev and K. Nagayama, J. Struct. Biol. 161, 211 (2008).
http://dx.doi.org/10.1016/j.jsb.2007.10.015
39.
39. M. Yamaguchi, R. Danev, K. Nishiyama, K. Sugawara, and K. Nagayama, J. Struct. Biol. 162, 271 (2008).
http://dx.doi.org/10.1016/j.jsb.2008.01.009
40.
40. K. Murata, X. A. Liu, R. Danev, J. Jakana, M. F. Schmid, J. King, K. Nagayama, and W. Chiu, Structure 18, 903 (2010).
http://dx.doi.org/10.1016/j.str.2010.06.006
41.
41. K. Nagayama and R. Danev, Philos. Trans. R. Soc. London, Ser. B 363, 2153 (2008).
http://dx.doi.org/10.1098/rstb.2008.2268
42.
42. K. Nagayama, Eur. Biophys. J. 37, 345 (2008).
http://dx.doi.org/10.1007/s00249-008-0264-5
43.
43. M. Marko, A. Leith, C. Hsieh, and R. Danev, J. Struct. Biol. 174, 400 (2011).
http://dx.doi.org/10.1016/j.jsb.2011.01.005
44.
44. W. Ehrenberg and R. E. Siday, Proc. Phys. Soc. London, Sec. B 62, 8 (1949).
http://dx.doi.org/10.1088/0370-1301/62/1/303
45.
45. P. N. T. Unwin, J. Microsc. (Oxford) 98, 299 (1973).
http://dx.doi.org/10.1111/j.1365-2818.1973.tb03834.x
46.
46. W. Krakow and B. M. Siegel, Optik 42, 245 (1975).
47.
47. G. Balossier and N. Bonnet, Optik 58, 361 (1981).
48.
48. M. Malac, M. Beleggia, M. Kawasaki, P. Li, and R. F. Egerton, Ultramicroscopy 118, 77 (2012).
http://dx.doi.org/10.1016/j.ultramic.2012.02.004
49.
49. R. M. Glaeser and K. H. Downing, Microsc. Microanal. 10, 790 (2004).
http://dx.doi.org/10.1017/S1431927604040668
50.
50. K. Schultheiss, F. Perez-Willard, B. Barton, D. Gerthsen, and R. R. Schroder, Rev. Sci. Instrum. 77, 033701 (2006).
http://dx.doi.org/10.1063/1.2179411
51.
51. D. Alloyeau, W. K. Hsieh, E. H. Anderson, L. Hilken, G. Benner, X. Meng, F. R. Chen, and C. Kisielowski, Ultramicroscopy 110, 563 (2010).
http://dx.doi.org/10.1016/j.ultramic.2009.11.016
52.
52. B. Barton et al., Ultramicroscopy 111, 1696 (2011).
http://dx.doi.org/10.1016/j.ultramic.2011.09.007
53.
53. A. Walter et al., Ultramicroscopy 116, 62 (2012).
http://dx.doi.org/10.1016/j.ultramic.2012.03.009
54.
54. T. Tamaki, H. Kasai, K. Harada, Y. Takahashi, and R. Nishi, Microsc. Microanal. 19, 1148 (2013).
55.
55. J. Shiue et al., J. Electron Microsc. 58, 137 (2009).
http://dx.doi.org/10.1093/jmicro/dfp006
56.
56. R. Cambie, K. H. Downing, D. Typke, R. M. Glaeser, and J. Jin, Ultramicroscopy 107, 329 (2007).
http://dx.doi.org/10.1016/j.ultramic.2006.09.001
57.
57. H. Rose, Ultramicroscopy 110, 488 (2010).
http://dx.doi.org/10.1016/j.ultramic.2009.10.003
58.
58. R. R. Schroder, B. Barton, H. Rose, and G. Benner, Microsc. Microanal. 13, 136 (2007).
59.
59. S. Hettler, B. Gamm, M. Dries, N. Frindt, R. R. Schroder, and D. Gerthsen, Microsc. Microanal. 18, 1010 (2012).
http://dx.doi.org/10.1017/S1431927612001560
60.
60. C. J. Edgcombe, A. Ionescu, J. C. Loudon, A. M. Blackburn, H. Kurebayashi, and C. H. W. Barnes, Ultramicroscopy 120, 78 (2012).
http://dx.doi.org/10.1016/j.ultramic.2012.06.011
61.
61. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
http://dx.doi.org/10.1103/PhysRev.115.485
62.
62. T. H. Boyer, Found. Phys. 32, 41 (2002).
http://dx.doi.org/10.1023/A:1013896713708
63.
63. T. H. Boyer, Phys. Rev. D 8, 1679 (1973).
http://dx.doi.org/10.1103/PhysRevD.8.1679
64.
64. S. Furhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express 13, 689 (2005).
http://dx.doi.org/10.1364/OPEX.13.000689
65.
65. J. Verbeeck, H. Tian, and P. Schattschneider, Nature (London) 467, 301 (2010).
http://dx.doi.org/10.1038/nature09366
66.
66. P. Schattschneider and J. Verbeeck, Ultramicroscopy 111, 1461 (2011).
http://dx.doi.org/10.1016/j.ultramic.2011.07.004
67.
67. B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, Science 331, 192 (2011).
http://dx.doi.org/10.1126/science.1198804
68.
68. N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, Nature (London) 494, 331 (2013).
http://dx.doi.org/10.1038/nature11840
69.
69. A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, Phys. Rev. Lett. 94, 233902 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.233902
70.
70. G. S. Settles, Schlieren and Shadowgraph Techniques : Visualizing Phenomena in Transparent Media (Springer, Berlin, 2001).
71.
71. B. Buijsse, F. M. H. M. van Laarhoven, A. K. Schmid, R. Cambie, S. Cabrini, J. Jin, and R. M. Glaeser, Ultramicroscopy 111, 1688 (2011).
http://dx.doi.org/10.1016/j.ultramic.2011.09.015
72.
72. G. B. Haydon and R. A. Lemons, J. Microsc. (Oxford) 95, 483 (1972).
http://dx.doi.org/10.1111/j.1365-2818.1972.tb01052.x
73.
73. A. G. Cullis and D. M. Maher, Ultramicroscopy 1, 97 (1975).
http://dx.doi.org/10.1016/S0304-3991(75)80012-X
74.
74. R. Danev and K. Nagayama, J. Phys. Soc. Jpn. 73, 2718 (2004).
http://dx.doi.org/10.1143/JPSJ.73.2718
75.
75. Y. Kaneko, R. Danev, K. Nitta, and K. Nagayama, J. Electron Microsc. 54, 79 (2005).
http://dx.doi.org/10.1093/jmicro/dfh105
76.
76. Y. Kaneko, R. Danev, K. Nagayama, and H. Nakamoto, J. Bacteriol. 188, 805 (2006).
http://dx.doi.org/10.1128/JB.188.2.805-808.2006
77.
77. B. Barton, F. Joos, and R. R. Schröder, J. Struct. Biol. 164, 210 (2008).
http://dx.doi.org/10.1016/j.jsb.2008.07.009
78.
78. H. Mueller, J. A. Jin, R. Danev, J. Spence, H. Padmore, and R. M. Glaeser, New J. Phys. 12, 073011 (2010).
http://dx.doi.org/10.1088/1367-2630/12/7/073011
79.
79. J. F. Dawson and Z. Fried, Phys. Rev. Lett. 19, 467 (1967).
http://dx.doi.org/10.1103/PhysRevLett.19.467
80.
80. H. Okamoto, Phys. Rev. A 81, 043807 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.043807
81.
81. H. Okamoto, Phys. Rev. A 85, 043810 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.043810
82.
82. R. H. Rochat, X. Liu, K. Murata, K. Nagayama, F. J. Rixon, and W. Chiu, J. Virol. 85, 1871 (2011).
http://dx.doi.org/10.1128/JVI.01663-10
83.
83. R. M. Glaeser et al., Ultramicroscopy 135, 6 (2013).
http://dx.doi.org/10.1016/j.ultramic.2013.05.023
84.
84. E. Majorovits, B. Barton, K. Schultheiss, F. Perez-Willard, D. Gerthsen, and R. R. Schroder, Ultramicroscopy 107, 213 (2007).
http://dx.doi.org/10.1016/j.ultramic.2006.07.006
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/11/10.1063/1.4830355
Loading
/content/aip/journal/rsi/84/11/10.1063/1.4830355
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/11/10.1063/1.4830355
2013-11-22
2014-12-28

Abstract

Contrast has traditionally been produced in electron-microscopy of weak phase objects by simply defocusing the objective lens. There now is renewed interest, however, in using devices that apply a uniform quarter-wave phase shift to the scattered electrons relative to the unscattered beam, or that generate in-focus image contrast in some other way. Renewed activity in making an electron-optical equivalent of the familiar “phase-contrast” light microscope is based in part on the improved possibilities that are now available for device microfabrication. There is also a better understanding that it is important to take full advantage of contrast that can be had at low spatial frequency when imaging large, macromolecular objects. In addition, a number of conceptually new phase-plate designs have been proposed, thus increasing the number of options that are available for development. The advantages, disadvantages, and current status of each of these options is now compared and contrasted. Experimental results that are, indeed, superior to what can be accomplished with defocus-based phase contrast have been obtained recently with two different designs of phase-contrast aperture. Nevertheless, extensive work also has shown that fabrication of such devices is inconsistent, and that their working lifetime is short. The main limitation, in fact, appears to be electrostatic charging of any device that is placed into the electron diffraction pattern. The challenge in fabricating phase plates that are practical to use for routine work in electron microscopy thus may be more in the area of materials science than in the area of electron optics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/11/1.4830355.html;jsessionid=2frmojmhis169.x-aip-live-03?itemId=/content/aip/journal/rsi/84/11/10.1063/1.4830355&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Invited Review Article: Methods for imaging weak-phase objects in electron microscopy
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/11/10.1063/1.4830355
10.1063/1.4830355
SEARCH_EXPAND_ITEM