1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Integrated fiber-mirror ion trap for strong ion-cavity coupling
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/12/10.1063/1.4838696
1.
1. P. Zoller, T. Beth, D. Binosi, R. Blatt, H. Briegel, D. Bruss, T. Calarco, J. I. Cirac, D. Deutsch, J. Eisert, A. Ekert, C. Fabre, N. Gisin, P. Grangiere, M. Grassl, S. Haroche, A. Imamoglu, A. Karlson, J. Kempe, L. Kouwenhoven, S. Kröll, G. Leuchs, M. Lewenstein, D. Loss, N. Lütkenhaus, S. Massar, J. E. Mooij, M. B. Plenio, E. Polzik, S. Popescu, G. Rempe, A. Sergienko, D. Suter, J. Twamley, G. Wendin, R. Werner, A. Winter, J. Wrachtrup, and A. Zeilinger, Eur. Phys. J. D 36, 203 (2005).
http://dx.doi.org/10.1140/epjd/e2005-00251-1
2.
2. S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, Nature (London) 484, 195 (2012).
http://dx.doi.org/10.1038/nature11023
3.
3. D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, Nature (London) 422, 412 (2003).
http://dx.doi.org/10.1038/nature01492
4.
4. H. Häffner, C. Roos, and R. Blatt, Phys. Rep. 469, 155 (2008).
http://dx.doi.org/10.1016/j.physrep.2008.09.003
5.
5. A. Stute, B. Casabone, B. Brandstätter, D. Habicher, P. O. Schmidt, T. E. Northup, and R. Blatt, Appl. Phys. B 107, 1145 (2012).
http://dx.doi.org/10.1007/s00340-011-4861-0
6.
6. G. R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, and H. Walther, Nature (London) 414, 49 (2001).
http://dx.doi.org/10.1038/35102129
7.
7. A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, Phys. Rev. Lett. 89, 103001 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.103001
8.
8. C. Russo, H. G. Barros, A. Stute, F. Dubin, E. S. Phillips, T. Monz, T. E. Northup, C. Becher, T. Salzburger, H. Ritsch, P. O. Schmidt, and R. Blatt, Appl. Phys. B 95, 205 (2009).
http://dx.doi.org/10.1007/s00340-009-3430-2
9.
9. D. R. Leibrandt, J. Labaziewicz, V. Vuletić, and I. L. Chuang, Phys. Rev. Lett. 103, 103001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.103001
10.
10. P. Herskind, A. Dantan, J. Marler, M. Albert, and M. Drewsen, Nat. Phys. 5, 494 (2009).
http://dx.doi.org/10.1038/nphys1302
11.
11. J. D. Sterk, L. Luo, T. A. Manning, P. Maunz, and C. Monroe, Phys. Rev. A 85, 062308 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.062308
12.
12. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, Nature (London) 431, 1075 (2004).
http://dx.doi.org/10.1038/nature02961
13.
13. H. G. Barros, A. Stute, T. E. Northup, C. Russo, P. O. Schmidt, and R. Blatt, New J. Phys. 11, 103004 (2009).
http://dx.doi.org/10.1088/1367-2630/11/10/103004
14.
14. A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, Nature (London) 485, 482 (2012).
http://dx.doi.org/10.1038/nature11120
15.
15. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, New J. Phys. 12, 065038 (2010).
http://dx.doi.org/10.1088/1367-2630/12/6/065038
16.
16. M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, Phys. Rev. Lett. 110, 043003 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.043003
17.
17. H. J. Kimble, Nature (London) 453, 1023 (2008).
http://dx.doi.org/10.1038/nature07127
18.
18. M. Trupke, E. Hinds, S. Eriksson, E. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, Appl. Phys. Lett. 87, 211106 (2005).
http://dx.doi.org/10.1063/1.2132066
19.
19. G. Cui, J. M. Hannigan, R. Loeckenhoff, F. M. Matinaga, M. G. Raymer, S. Bhongale, M. Holland, S. Mosor, S. Chatterjee, H. M. Gibbs, and G. Khitrova, Opt. Express 14, 2289 (2006).
http://dx.doi.org/10.1364/OE.14.002289
20.
20. T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, Appl. Phys. Lett. 89, 111110 (2006).
http://dx.doi.org/10.1063/1.2347892
21.
21. A. Muller, E. B. Flagg, M. Metcalfe, J. Lawall, and G. S. Solomon, Appl. Phys. Lett. 95, 173101 (2009).
http://dx.doi.org/10.1063/1.3245311
22.
22. A. Roy and M. D. Barrett, Appl. Phys. Lett. 99, 171112 (2011).
http://dx.doi.org/10.1063/1.3658391
23.
23. A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, Opt. Lett. 35, 2293 (2010).
http://dx.doi.org/10.1364/OL.35.002293
24.
24. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, Nature (London) 450, 272 (2007).
http://dx.doi.org/10.1038/nature06331
25.
25. H. Takahashi, A. Wilson, A. Riley-Watson, F. Oručević, N. Seymour-Smitz, M. Keller, and W. Lange, New J. Phys. 15, 053011 (2013).
http://dx.doi.org/10.1088/1367-2630/15/5/053011
26.
26. A. P. VanDevender, Y. Colombe, J. Amini, D. Leibfried, and D. J. Wineland, Phys. Rev. Lett. 105, 023001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.023001
27.
27. A. G. Fox and T. Li, Bell Syst. Tech. J. 40, 453 (1961).
http://dx.doi.org/10.1002/j.1538-7305.1961.tb01625.x
28.
28. A. E. Siegman, Lasers (University Science Books, Sausalito, CA, 1986).
29.
29.Optical profiler for accurate 3D metrology, Fogale: Microsurf3D.
30.
30. W. B. Joyce and B. C. DeLoach, Appl. Opt. 23, 4187 (1984).
http://dx.doi.org/10.1364/AO.23.004187
31.
31. C. J. Hood, H. J. Kimble, and J. Ye, Phys. Rev. A 64, 033804 (2001).
http://dx.doi.org/10.1103/PhysRevA.64.033804
32.
32. G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, Opt. Lett. 17, 363 (1992).
http://dx.doi.org/10.1364/OL.17.000363
33.
33. T. W. Lynn, Ph.D. thesis, California Institute of Technology, Pasadena, 2003.
34.
34. C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, Science 287, 1447 (2000).
http://dx.doi.org/10.1126/science.287.5457.1447
35.
35.Copper coated optical fiber, IVG fiber: Cu800-200-custom and Cu50-200.
36.
36.Two component epoxy, Epoxy Technology: EPO-TEK 353ND and EPO-TEK 301.
37.
37.Bare fiber adapter, Bullet: NBG-FC230.
38.
38.Fusion splicing workstation: Vytran: FFS-2000.
39.
39.Manual six-axis, parallel flexure platform, Thorlabs: Nanomax602D/M.
40.
40. T. E. Northup, Ph.D. thesis, California Institute of Technology, Pasadena, 2008.
41.
41. E. Atanassova, T. Dimitrova, and J. Koprinarova, Appl. Surf. Sci. 84, 193 (1995).
http://dx.doi.org/10.1016/0169-4332(94)00538-9
42.
42. M. Cetina, A. Bylinskii, L. Karpa, D. Gangloff, K. M. Beck, Y. Ge, M. Scholz, A. T. Grier, I. Chuang, and V. Vuletic, New J. Phys. 15, 053001 (2013).
http://dx.doi.org/10.1088/1367-2630/15/5/053001
43.
43. J. Scofield, J. Electron Spectrosc. Relat. Phenom. 8(2), 129 (1976).
http://dx.doi.org/10.1016/0368-2048(76)80015-1
44.
44. F. Klauser, S. Ghodbane, R. Boukherroub, S. Szunerits, D. Steinmüller-Nethl, E. Bertel, and N. Memmel, Diamond Relat. Mater. 19, 474 (2010).
http://dx.doi.org/10.1016/j.diamond.2009.11.013
45.
45. N. P. Bansal, J. Mater. Sci. 29, 5065 (1994).
http://dx.doi.org/10.1007/BF01151098
46.
46. S. T. Gulde, Ph.D. thesis, Leopold-Franzens-Universität Innsbruck, Innsbruck, 2003.
47.
47. M. Riebe, Ph.D. thesis, University of Innsbruck, Innsbruck, 2005.
48.
48. W. Paul, Rev. Mod. Phys. 62, 531 (1990).
http://dx.doi.org/10.1103/RevModPhys.62.531
49.
49. J. Chiaverini, R. B. Blakestad, J. Britton, J. D. Jost, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, Quantum Inf. Comput. 5, 419 (2005).
50.
50. S. A. Schulz, U. G. Poschinger, F. Ziesel, and F. Schmidt-Kaler, New J. Phys. 10, 045007 (2008).
http://dx.doi.org/10.1088/1367-2630/10/4/045007
51.
51. C. Schrama, E. Peik, W. Smith, and H. Walther, Opt. Commun. 101, 32 (1993).
http://dx.doi.org/10.1016/0030-4018(93)90318-Y
52.
52. R. Maiwald, D. Leibfried, J. Britton, J. C. Bergquist, G. Leuchs, and D. J. Wineland, Nat. Phys. 5, 551554 (2009).
http://dx.doi.org/10.1038/nphys1311
53.
53. Q. A. Turchette, D. Kielpinski, B. E. King, D. Leibfried, D. M. Meekhof, C. J. Myatt, M. A. Rowe, C. A. Sackett, C. S. Wood, W. M. Itano, C. Monroe, and D. J. Wineland, Phys. Rev. A 61, 063418 (2000).
http://dx.doi.org/10.1103/PhysRevA.61.063418
54.
54. H. Rohde, S. T. Gulde, C. F. Roos, P. A. Barton, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, J. Opt. B 3, S34 (2001).
http://dx.doi.org/10.1088/1464-4266/3/1/357
55.
55. J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, Nat. Phys. 4, 463 (2008).
http://dx.doi.org/10.1038/nphys961
56.
56. M. Harlander, M. Brownnutt, W. Hänsel, and R. Blatt, New J. Phys. 12, 093035 (2010).
http://dx.doi.org/10.1088/1367-2630/12/9/093035
57.
57. G. Brady, A. Ellis, D. Moehring, D. Stick, C. Highstrete, K. Fortier, M. Blain, R. Haltli, A. Cruz-Cabrera, R. Briggs, J. Wendt, T. Carter, S. Samora, and S. Kemme, Appl. Phys. B 103, 801 (2011).
http://dx.doi.org/10.1007/s00340-011-4453-z
58.
58. T. Kim, P. Maunz, and J. Kim, Phys. Rev. A 84, 063423 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.063423
59.
59. D. Gandolfi, M. Niedermayr, M. Kumph, M. Brownnutt, and R. Blatt, Rev. Sci. Instrum. 83, 084705 (2012).
http://dx.doi.org/10.1063/1.4737889
60.
60.Perfluoroelastomer, DuPont: Kalrez.
61.
61.Positioner, SmarAct: SLC-20.
62.
62.Positioner, SmarAct: SL-06.
63.
63.CPO Ltd. Charged Particle Optics programs, see www.electronoptics.com.
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/12/10.1063/1.4838696
Loading
/content/aip/journal/rsi/84/12/10.1063/1.4838696
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/12/10.1063/1.4838696
2013-12-11
2015-01-31

Abstract

We present and characterize fiber mirrors and a miniaturized ion-trap design developed to integrate a fiber-based Fabry-Perot cavity (FFPC) with a linear Paul trap for use in cavity-QED experiments with trapped ions. Our fiber-mirror fabrication process not only enables the construction of FFPCs with small mode volumes, but also allows us to minimize the influence of the dielectric fiber mirrors on the trapped-ion pseudopotential. We discuss the effect of clipping losses for long FFPCs and the effect of angular and lateral displacements on the coupling efficiencies between cavity and fiber. Optical profilometry allows us to determine the radii of curvature and ellipticities of the fiber mirrors. From finesse measurements, we infer a single-atom cooperativity of up to 12 for FFPCs longer than 200 μm in length; comparison to cavities constructed with reference substrate mirrors produced in the same coating run indicates that our FFPCs have similar scattering losses. We characterize the birefringence of our fiber mirrors, finding that careful fiber-mirror selection enables us to construct FFPCs with degenerate polarization modes. As FFPCs are novel devices, we describe procedures developed for handling, aligning, and cleaning them. We discuss experiments to anneal fiber mirrors and explore the influence of the atmosphere under which annealing occurs on coating losses, finding that annealing under vacuum increases the losses for our reference substrate mirrors. X-ray photoelectron spectroscopy measurements indicate that these losses may be attributable to oxygen depletion in the mirror coating. Special design considerations enable us to introduce a FFPC into a trapped ion setup. Our unique linear Paul trap design provides clearance for such a cavity and is miniaturized to shield trapped ions from the dielectric fiber mirrors. We numerically calculate the trap potential in the absence of fibers. In the experiment additional electrodes can be used to compensate distortions of the potential due to the fibers. Home-built fiber feedthroughs connect the FFPC to external optics, and an integrated nanopositioning system affords the possibility of retracting or realigning the cavity without breaking vacuum.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/12/1.4838696.html;jsessionid=1p6048a0b3fqd.x-aip-live-02?itemId=/content/aip/journal/rsi/84/12/10.1063/1.4838696&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Integrated fiber-mirror ion trap for strong ion-cavity coupling
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/12/10.1063/1.4838696
10.1063/1.4838696
SEARCH_EXPAND_ITEM