1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Invited Article: Expanded and improved traceability of vibration measurements by laser interferometry
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/12/10.1063/1.4845916
1.
1. H.-J. von Martens, “Metrology and traceability of vibration and shock measurements,” Handbook of Noise and Vibration Control, edited by M. J. Crocker (John Wiley and Sons, Inc., Hoboken, NJ, 2007), Chap. 53, p. 633.
2.
2. T. R. Licht, “Calibration of shock and vibration transducers,” Handbook of Noise and Vibration Control, edited by M. J. Crocker (John Wiley and Sons, Inc. Hoboken, NJ, 2007), Chap. 52, p. 624.
3.
3. International Standard ISO/IEC 17025, General Requirements for the Competency of Testing and Calibration Laboratories (International Organization for Standardization (ISO), Geneva, 2005).
4.
4. JCGM 100:2008, Evaluation of Measurement Data: Guide to the Expression of Uncertainty in Measurement, 1st ed., GUM 1995 with minor corrections September 2008. Document produced by Working Group 1 of the Joint Committee for Guides in Metrology (JCGM/WG 1). Copyright of this document is shared jointly by the JCGM member organizations (BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML), see http://www.bipm.org/en/publications/guides/gum.html and http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf.
5.
5. H.-J. von Martens, A. Link, H.-J. Schlaak, A. Täubner, W. Wabinski, and C. Weißenborn, “Investigations to assess the best accuracy attainable in accelerometer calibrations,” Proc. SPIE 4827, 258 (2002).
http://dx.doi.org/10.1117/12.468170
6.
6. H.-J. von Martens, “Metrology of vibration measurements by laser techniques,” Proc. SPIE 7098, 709802 (2008).
http://dx.doi.org/10.1117/12.802904
7.
7. H.-J. von Martens, C. Elster, A. Link, A. Täubner, and W. Wabinski, “CCAUV.V-K1 final report,” Metrologia 40(Tech. Suppl.), 09001 (2003), see http://kcdb.bipm.org/AppendixB/appbresults/ccauv.v-k1/ccauv.v-k1_final_report.pdf.
http://dx.doi.org/10.1088/0026-1394/40/1A/09001
8.
8. S. Chen, H.-J., and H.-J. von Martens, “Final Report on Regional Key Comparison APMP.AUV.V-K1 of Standard Accelerometer,” (BIPM, Sèvres, 2001), see http://kcdb.bipm.org/appendixb/appbresults/ccauv.v-k1/apmp.auv.v-k1_final_report.pdf.
9.
9. H.-J. von Martens, C. Elster, A. Link, A. Täubner, and T. Bruns, “Final report on the key comparison EUROMET.AUV.V-K1,” Metrologia 43(Tech. Suppl.), 09002 (2006), see http://kcdb.bipm.org/AppendixB/appbresults/ccauv.v-k1/euromet.auv.v-k1_final_report.pdf.
http://dx.doi.org/10.1088/0026-1394/43/1A/09002
10.
10. D. J. Evans, A. Hornikova, S. D. Leigh, A. L. Rukhin, and W. Strawderman, “Report on acceleration comparison SIM. AUV.V-K1,” Metrologia 46(Tech. Suppl.), 09002 (2009), see http://www.bipm.org/utils/common/pdf/final_reports/AUV/V-K1/SIM.AUV.V-K1.pdf.
http://dx.doi.org/10.1088/0026-1394/46/1A/09002
11.
11. C. S. Veldman and H.-J. von Martens, “Final report on supplementary comparison SADCMET.AUV.V-S1,” Metrologia 41(Tech. Suppl.), 09001 (2004), see http://iopscience.iop.org/0026-1394/41/1A/09001/.
http://dx.doi.org/10.1088/0026-1394/41/1A/09001
12.
12. BIPM Consultative Committee for Acoustics, Ultrasound and Vibration (CCAUV), Report of the 8th Meeting to the International Committee for Weights and Measures (13 June 2012) (2012).
13.
13. International Standard ISO 16063-11, Methods for the Calibration of Vibration and Shock Transducers — Part 11: Primary Vibration Calibration by Laser Interferometry (International Organization for Standardization (ISO), Geneva, 1999), reviewed and confirmed in 2009.
14.
14. International Standard ISO 16063-21, Methods for the Calibration of Vibration and Shock Transducers – Part 21: Vibration Calibration by Comparison to a Reference Transducer (International Organization for Standardization (ISO), Geneva, 2003), reviewed and confirmed in 2008 with a Technical Corrigendum issued in 2009 (Cor.1:2009).
15.
15. E. Jones, W. B. Yellon, and S. Edelman, “Piezoelectric shakers for wide-frequency calibration of vibration pick-ups,” J. Acoust. Soc. Am. 45(6), 1556 (1969).
http://dx.doi.org/10.1121/1.1911638
16.
16. R. D. Sill, “Accelerometer calibration to 50 kHz with a quadrature laser interferometer”. Proceedings NCSL, Workshop and Symposium, Session 7B, Atlanta, GA (1997), p. 767.
17.
17. J.-F. Xue and T.-X. He, “The application of Bessel function methods on high frequency vibration calibration,” Proc. SPIE, 5503, 423 (2004).
http://dx.doi.org/10.1117/12.579603
18.
18. G. Silva Pineda, H.-J. von Martens, S. Rojas Ramires, A. Ruis Rueda, and L. Muniz, “Calibration of laser vibrometers at frequencies up to 100 kHz and higher,” Proc. SPIE, 7098, 70981K (2008).
http://dx.doi.org/10.1117/12.803338
19.
19. T. Bruns, F. Blume, and A. Täubner, “Laser vibrometer calibration at high frequencies using conventional calibration equipment.” XIX IMEKO World Congress Fundamental and Applied Metrology, Lisbon, Portugal, 6-10 September 2009 (IMEKO, 2009), pp. 25162519.
20.
20. B. F. Payne and D. J. Evans, “Piezoelectric shaker developments for calibration of accelerometers at extended frequencies,” AIP Conf. Proc. 1457, 200 (2012).
http://dx.doi.org/10.1063/1.4730558
21.
21. M. Winter, G. Siegmund, and C. Rembe, “The problem of the calibration of laser-Doppler vibrometers at high frequencies,” AIP Conf. Proc. 1457, 165 (2012).
http://dx.doi.org/10.1063/1.4730555
22.
22. M. Bauer, F. Ritter, and G. Siegmund, “High-precision laser vibrometers based on digital Doppler signal processing,” Proc. SPIE, 4827, 50 (2002).
http://dx.doi.org/10.1117/12.468166
23.
23. H.-J. von Martens, “Standardization of laser methods and techniques for vibration measurements and calibrations,” AIP Conf. Proc. 1253, 423 (2010).
http://dx.doi.org/10.1063/1.3455486
24.
24. H.-J. von Martens, “Recent progress of ISO TC 108/ SC 3 towards key comparisons and traceability in the field of vibration and shock acceleration,” Report of the Permanent Representative of ISO TC 108 to BIPM/CCAUV, Doc. CCAUV/12-02 (2012).
25.
25. International Standard ISO16063-41, Methods for the Calibration of Vibration and Shock Transducers—Part 41: Calibration of Laser Vibrometers (International Organization for Standardization (ISO), Geneva, 2011).
26.
26. International Standard ISO 16063-15, Methods for the Calibration of Vibration and Shock Transducers—Part 15: Primary Angular Vibration Calibration by Laser Interferometry (International Organization for Standardization (ISO), Geneva, 2006), reviewed and confirmed in 2009.
27.
27. H.-J. von Martens, “Recent progress of ISO TC 108/ SC 3 towards key comparisons and traceability in the field of vibration and shock acceleration,” Report of the ISO International Observer to the 7th Meeting of the CCAUV, BIPM, Sèvres, Oct. 2010, Doc. CCAUV/10-03 (2010).
28.
28. H.-J. von Martens, G. Silva Pineda, A. Ruis Rueda, and R. Vasquez Ovando, “Comparison of three independent interferometer methods at high frequencies,” unpublished report (Centro Nacional de Metrologia (CENAM), Queretaro, Mexico, 2010).
29.
29. H.-J. von Martens, “Interferometric counting methods for measuring displacements in the range 10−9 m to 1 m,” Metrologia 24(4), 163 (1987).
http://dx.doi.org/10.1088/0026-1394/24/4/002
30.
30. H.-J. von Martens, “Applicability of ISO standard methods to vibration measurements at high frequencies and high accelerations,” AIP Conf. Proc. 1457, 181 (2012).
http://dx.doi.org/10.1063/1.4730557
31.
31. JCGM 200:2012, International Vocabulary of Metrology: Basic and General Concepts and Associated Terms (VIM), 3rd ed., 2008 version with minor corrections, see http://www.bipm.org/en/publications/guides/vim.html and http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf.
32.
32. C. Elster, A. Link, and H.-J. von Martens, “Model-based analysis of key comparisons applied to accelerometer calibrations,” Meas. Sci. Technol. 12, 1672 (2001).
http://dx.doi.org/10.1088/0957-0233/12/10/308
33.
33. C. Elster and A. Link, “Analysis of key comparison data: Assessment of current methods for determining a reference value,” Meas. Sci. Technol. 12, 1431 (2001).
http://dx.doi.org/10.1088/0957-0233/12/9/308
34.
34. H.-J. von Martens, C. Elster, A. Link, W. Wöger, and P. J. Allisy, “Linking the results of the regional key comparison APMP.AUV.V-K1 to those of the CIPM key comparison CCAUV.V-K1,” Metrologia 41(Tech. Suppl.), 09002 (2004), see http://kcdb.bipm.org/AppendixB/appbresults/ccauv.v-k1/auv.v-k1_link_report.pdf.
http://dx.doi.org/10.1088/0026-1394/41/1A/09002
35.
35.CIPM MRA: Mutual Recognition of National Measurement Standards and of Calibration and Measurement Certificates Issued by National Metrology Institutes. Arrangement drawn up by the International Committee of Weights and Measures under the authority given to it in the Metre Convention Paris, 14 October 1999. Technical Supplement revised in October 2003, edited by BIPM (2003), see http://www.bipm.org/en/cipm-mra/.
36.
36. H. Nicklich, M. Brucke, and H.-J. von Martens, “Design of vibration and shock exciters for calibrations by laser interferometry,” Proc. SPIE 7098, 70981I (2008).
http://dx.doi.org/10.1117/12.803188
37.
37. International Standard ISO 16063-13, Methods for the Calibration of Vibration and Shock Transducers—Part 13: Primary Shock Calibration Using Laser Interferometry (International Organization for Standardization (ISO), Geneva, 2001), reviewed and confirmed in 2006 and 2012.
38.
38. International Standard ISO 16063-12, Methods for the Calibration of Vibration and Shock Transducers—Part 12: Primary Vibration Calibration by the Reciprocity Method (International Organization for Standardization (ISO), Geneva, 2002), reviewed and confirmed in 2007 with a Technical Corrigendum issued in 2008 (Cor.1:2008).
39.
39. International Standard ISO 16063-1, Methods for the Calibration of Vibration and Shock Transducers—Part 1: Basic Concepts (International Organization for Standardization (ISO), Geneva, 1998), reviewed and confirmed in 2004 and 2009.
40.
40. D. J. Evans and H. C. Pussey, “Shock and vibration standards,” Harris’ Shock and Vibration Handbook, 6th ed. (McGraw-Hill, New York, 2010), Chap. 17.
41.
41. D. C. Robinson, M. R. Serbyn, and B. F. Payne, “A description of NBS calibration services in mechanical vibration and shock,” NBS Technical Note No. 1232 (NBS (NIST), Gaithersburg, 1987).
42.
42. B. F. Payne and D. J. Evans, “Comparison of results of calibrating the magnitude of the sensitivity of accelerometers by laser interferometry and reciprocity,” Metrologia 36, 391 (1999).
http://dx.doi.org/10.1088/0026-1394/36/4/19
43.
43. B. F. Payne and D. J. Evans, “Primary calibration of accelerometers at NIST using a dual coil shaker,” Proceedings of the 72nd Shock and Vibration Symposium, 12–16 November 2001, (Destin, FL 2001), p. 138.
44.
44. B. F. Payne, “Laser interferometer and reciprocity calibration of accelerometers using the NIST super shaker,” Proc. SPIE 3411, 187 (1998).
http://dx.doi.org/10.1117/12.307699
45.
45. H.-J. von Martens, A. Link, H.-J. Schlaak, A. Täubner, W. Wabinski, and U. Göbel, “Recent advances in vibration and shock measurements and calibrations using laser interferometry,” Proc. SPIE 5503, 1 (2004).
http://dx.doi.org/10.1117/12.579524
46.
46. G. W. Vogl, K. K. Harper, and B. F. Payne, “Modeling and experimental analysis of piezoelectric shakers for high-frequency calibration of accelerometers,” Proc. AIP 1253, 383 (2010).
http://dx.doi.org/10.1063/1.3455480
47.
47. B. F. Payne, K. Harper, and G. Vogl, “Piezoelectric shaker development for high frequency calibration of accelerometers,” Proc. AIP 1253, 373 (2010).
http://dx.doi.org/10.1063/1.3455479
48.
48. W. S. Ohm, L. Wu, P. Hanes, and G. S. K. Wong, “Generation of low-frequency vibration using a cantilever beam for calibration of accelerometers,” J. Sound Vib. 289(1/2), 192 (2006).
http://dx.doi.org/10.1016/j.jsv.2005.02.002
49.
49. H.-J. von Martens, A. Täubner, W. Wabinski, A. Link, and H.-J. Schlaak, “Laser interferometry: Tool and object in vibration and shock calibrations,” Proc. SPIE 3411, 195 (1998).
http://dx.doi.org/10.1117/12.307700
50.
50. U. Buehn and H. Nicklich, “Calibration of laser vibrometer standards according to the standardization project ISO 16063-41,” Proc. SPIE 6345, 63451F (2006).
http://dx.doi.org/10.1117/12.693075
51.
51. A. Täubner and H.-J. von Martens, “Diffraction grating interferometer for the accurate measurement of rotational quantities,” Measurement 16, 71 (1995).
http://dx.doi.org/10.1016/0263-2241(96)80000-5
52.
52. A. Täubner and H.-J. von Martens, “Development of special diffraction grating interferometers to realize and disseminate the unit of angular acceleration,” Proc. SPIE 2868, 438 (1996).
http://dx.doi.org/10.1117/12.248667
53.
53. A. Täubner and H.-J. von Martens, “Measurement of angular acceleration, angular velocities and rotation angles by grating interferometry,” Measurement 24, 21 (1998).
http://dx.doi.org/10.1016/S0263-2241(98)00042-6
54.
54. H.-J. von Martens and A. Täubner, “Interferometric low-frequency calibration of translation and rotation quantity transducers,” Proceedings 7th International Meeting on Low Frequency Noise and Vibration, Edinburgh (1993), p. 77.
55.
55. Jun Peng, “Development of a primary angular shock calibration system,” Proc. SPIE 7098, 70981M (2008).
http://dx.doi.org/10.1117/12.803347
56.
56. Jun Peng, “Comparison of angular movement measurement using grating and laser interferometer,” Proc. SPIE 7098, 709811 (2008).
http://dx.doi.org/10.1117/12.803155
57.
57. Li Zhang and Jun Peng, “Calibrating angular transducer using sinusoidal and shock excitation,” AIP Conf. Proc. 1457, 176 (2012).
http://dx.doi.org/10.1063/1.4730556
58.
58. Wan-Sup Cheung and T. R. Licht, “Progress in development of calibration systems for angular vibration pickups,” Proceedings of the 19 IMEKO World Congress, Lisbon (2009).
59.
59. A. Link, H.-J. von Martens, and W. Wabinski, “New method for absolute shock calibration of accelerometers,” Proc. SPIE 3411, 224 (1998).
http://dx.doi.org/10.1117/12.307704
60.
60. A. Link, W. Wabinski, and H.-J. von Martens, “Accelerometer identification by high shock intensities using laser interferometry,” Proc. SPIE 5503, 580 (2004).
http://dx.doi.org/10.1117/12.579618
61.
61. M. Meyer, H.-J. von Martens, and W. Wabinski, “Data acquisition and multi-channel control system based on distributed real-time VXI system,” PTB-Mitteilungen 105, 107 (1995).
62.
62. S. Rojas-Ramires, A. Elias-Juarez, H.-J. Schlaak, and H.-J. von Martens, “Shock measurements with a homodyne interferometer for accelerometer calibration,” Proc. SPIE, 4072, 146 (2000).
http://dx.doi.org/10.1117/12.386722
63.
63. D. J. Evans, “Testing the sensitivity of accelerometers using mechanical shock pulses under NIST special publication 250 special test no. 24040S,” ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA (NIST, Gaithersburg, 1995).
64.
64. P. Hohmann, “Schwingungsmessungen mit Laserinterferometern zur Kalibrierung von Aufnehmern,” Acustica 26, 122 (1972).
65.
65. E. Sadikoglu, E. Bilgic, and B. Karaboce, “Characterization of commercial type vibration exciters by self-mixing interferometry,” Proc. SPIE 5503, 598 (2004).
http://dx.doi.org/10.1117/12.579620
66.
66. Da-Hong Lian, Xiao-Mei Xu, and Xin-Liang Li, “Accelerometer shock calibration using differential grating laser interferometer from 100 m/s2 to 1 000 000 m/s2,” Proc. SPIE. 3411, 239 (1998).
http://dx.doi.org/10.1117/12.307706
67.
67. F. Alasia, S. Baggia, G. Basile, G. Booth, and F. Mazzoleni, “A four-reflection interferometer configuration for vibration calibration,” Proc. SPIE 4072, 106 (2000).
http://dx.doi.org/10.1117/12.386753
68.
68. G. P. Ripper, C. D. Ferreira, D. B. Teixeira, R. S. Dias, and G. B. Micheli, “A new system for primary calibration of vibration transducers at low frequencies,” in Proceedings of the IMEKO 2010 TC3, TC5 and TC22 Conferences, 22−25 November 2010, Pattaya, Chonburi, Thailand (2010), p. 253.
69.
69. N. H. Clark, “First-level calibrations of accelerometers,” Metrologia 36, 385 (1999).
http://dx.doi.org/10.1088/0026-1394/36/4/18
70.
70. K. Ueda, T. Usuda, T. Ishigami, and T. Kurosawa, “The current status of measurement standards for vibration and shock in NRLM,” Proc. SPIE 4072, 113 (2000).
http://dx.doi.org/10.1117/12.386720
71.
71. T. Usuda, A. Ohta, T. Ishigami, O. Fuchiwaki, D. Misaki, H. Aoyama, and S. Sato, “The current progress of measurement standards for vibration in NMIJ/AIST,” Proc. SPIE 5503, 30 (2004).
http://dx.doi.org/10.1117/12.579527
72.
72. G. Basile, D. Mari, and F. Mazzoleni, “A four reflection laser interferometer for vibration measurements,” Proc. SPIE 5503, 39 (2004).
http://dx.doi.org/10.1117/12.579530
73.
73. Li Zhang and Jun Peng, “Primary acceleration calibration by heterodyne laser interferometer and PXI instrument,” Proc. SPIE 5503, 588 (2004).
http://dx.doi.org/10.1117/12.579619
74.
74. S. Chen, “Accelerometer sensitivity calibration by phase differences of a single channel laser interferometer: theory,” Proc. SPIE 5503, 417 (2004).
http://dx.doi.org/10.1117/12.579602
75.
75. A. C. Lewin, V. Roth, and G. Siegmund, “New concept for interferometric measurement of rotational vibrations,” Proc. SPIE 2358, 124 (1994).
76.
76. H. Nozato, T. Usuda, A. Oota, and T. Ishigami, “Calibration of vibration pick-ups with laser interferometry: part IV. Development of a shock acceleration exciter and calibration system,” Meas. Sci. Technol. 21(6), 065107 (2010).
http://dx.doi.org/10.1088/0957-0233/21/6/065107
77.
77. A. Sadikoglu, E. Bilgic, and B. Karaboce, “Realization and dissemination of linear acceleration unit at UME,” Proc. SPIE 4827, 288 (2002).
http://dx.doi.org/10.1117/12.468172
78.
78. G. P. Ripper, G. A. Garcia, and R. S. Dias, “An interferometric accelerometer calibration system with flexible acquisition rate and recursive moving average filteringProc. SPIE 6345, 051 (2006).
79.
79. M. J. Lally and D. L. Brown, “Benefits and behavior of a simultaneous multiple sensor calibrator,” Proceedings of the 7th International Modal Analysis Conference (1989), p. 496.
80.
80. M. C. Witter, D. L. Brown, and R. W. Bono, “Broadband 6 DOF Accelerometer calibration via impact excitation,” Proceedings of the 16th International Modal Analysis Conference, Santa Barbara, CA (1998), p. 907.
81.
81. V. I. Bateman and P. D. Thatcher, “Certification of a 200,000 g shock calibration technique for sensors,” IEST's 47th Annual Technical Meeting and Exposition Proceedings, Phoenix, AZ (2001), p. 22.
82.
82. Da-zhi Zhang, Ying-jie Cao, Li Zhang, Xin-liang Li, and Chun-yan Hu, “The application of orthogonal homodyne interferometer in the vibration calibration of ultra-low frequency and large amplitude,” AIP Conf. Proc. 1457, 206 (2012).
http://dx.doi.org/10.1063/1.4730559
83.
83. A. Täubner, “Kalibrierung von Beschleunigungsaufnehmern durch Schwingungs- und Stoßanregung,” Fachseminar - Kalibrieren in der Schwingungstechnik, SPEKTRA Schwingungstechnik und Akustik GmbH Dresden, November 2004 (unpublished lecture) (2004).
84.
84. H. Müller, “Stoßförmige Kalibrierung von Beschleunigungsaufnehmern nach dem Vergleichsverfahren,” Ph.D. dissertation (Technische Universität Carolo-Wilhelmina zu Braunschweig, Fakultät für Maschinenbau und Elektrotechnik, 2001), see http://opus.tu-bs.de/opus/volltexte/2001/227.
85.
85. A. Link, W. Wabinski, A. Pohl, and H.-J. von Martens, “Accelerometer identification using laser interferometry,” Proc. SPIE 7098, 126 (2000).
86.
86. H.-J. von Martens, T. Bruns, A. Täubner, W. Wabinski, and U. Göbel, “Recent progress in accurate vibration measurements by laser techniques,” Proc. SPIE 6345, 011 (2006).
87.
87. C. Weissenborn, “Kalibrierung von Beschleunigungsaufnehmern bei mehrachsiger Anregung,” Ph. D. dissertation (Technische Universität Carolo-Wilhelmina zu Braunschweig, Fakultät für Maschinenbau und Elektrotechnik, 2001).
88.
88. T. Usuda, C. Weißenborn, and H.-J. von Martens, “Theoretical and experimental investigation of transverse sensitivity of accelerometers under multi-axial excitation,” Meas. Sci. Technol. 15, 896 (2004).
http://dx.doi.org/10.1088/0957-0233/15/5/017
89.
89. ISO 16063-31:2009, Methods for the Calibration of Vibration and Shock Transducers—Part 31: Testing of Transverse Vibration Sensitivity (International Organization for Standardization (ISO), Geneva, 2009).
90.
90. H.-J. von Martens, “Representation and transfer of the units of vibration quantities in the GDR,” Bull. OIML 108, 26 (1987).
91.
91. H.-J. von Martens, “Current state and trends of ensuring traceability for vibration measurements,” Metrologia 36, 357 (1999).
http://dx.doi.org/10.1088/0026-1394/36/4/16
92.
92. H.-J. von Martens, A. Täubner, W. Wabinski, A. Link, and H.-J. Schlaak, “Traceability of vibration and shock measurements by laser interferometry,” Measurement 28, 3 (2000).
http://dx.doi.org/10.1016/S0263-2241(00)00003-8
93.
93. C. S. Veldman, “A novel implementation of an ISO standard for primary vibration calibration by laser interferometer,” Metrologia 40, 1 (2003).
http://dx.doi.org/10.1088/0026-1394/40/2/301
94.
94. H.-J. von Martens, “Generalization and analysis of the fringe-counting method for interferometric measurement of motion quantities,” Measurement 25, 71 (1999).
http://dx.doi.org/10.1016/S0263-2241(98)00071-2
95.
95. H.-J. von Martens, “Investigations into the uncertainties of interferometric measurements of linear and circular vibrations,” Shock Vib. 4(5-6), 327 (1997).
96.
96. S. Edelman, E. Jones, and E. Smith, “Some developments in vibration measurement,” J. Acoust. Soc. Am. 27(4), 728 (1955).
http://dx.doi.org/10.1121/1.1908009
97.
97. V. A. Schmidt, S. Edelman, E. R. Smith, and E. T. Pierce, “Modulated photoelectric measurement of vibration,” J. Acoust. Soc. Am. 34, 455 (1962).
http://dx.doi.org/10.1121/1.1918149
98.
98. N. H. Clark, “An improved method for calibrating reference standard accelerometers,” Metrologia 19, 103 (1983).
http://dx.doi.org/10.1088/0026-1394/19/3/004
99.
99. A. Link, J. Gerhardt, and H.-J. von Martens, “Amplitude and phase calibration of accelerometers in the nanometer range by heterodyne interferometry,” Proc. SPIE 2868, 37 (1996).
http://dx.doi.org/10.1117/12.248669
100.
100. A. Link, J. Gerhardt, and H.-J. von Martens, “Amplitude and phase measurement of sinusoidal vibration the nanometer range using laser interferometry,” Measurement 24, 55 (1998).
http://dx.doi.org/10.1016/S0263-2241(98)00045-1
101.
101. W. Wabinski, and H.-J. von Martens, “Time interval analysis of interferometer signals for measuring amplitude and phase of vibrations, Proc. SPIE 2868, 166 (1996)
http://dx.doi.org/10.1117/12.248636
102.
102. G. Siegmund, “Specifications of laser vibrometers: Requirements, definitions, verification,” Paper presented at the Final Meeting European Project “Laser vibrometry network: Systems and applications” (LAVINYA), EC Program Measurements and Testing, Thematic Networks, Contract G6RT-CT-2002-05093, 2002, Project Leader: E. P. Tomasini, Ancona, 10th May 2005.
103.
103. C. S. Veldman and H.-J. von Martens, “Phase calibration of laboratory standard accelerometers using laser interferometry,” Proc. SPIE 5503, 403 (2004).
http://dx.doi.org/10.1117/12.579599
104.
104. T. Usuda, E. Furuta, A. Ohta and H. Nakano, “Development of laser interferometer for sin approximation method,” Proc. SPIE 4827, 29 (2002).
http://dx.doi.org/10.1117/12.468164
105.
105. C. S. Veldman, “A novel implementation of the sine-approximation method for primary vibration calibration by laser interferometry,” Proc. SPIE 4827, 37 (2002).
http://dx.doi.org/10.1117/12.468165
106.
106. Qiao Sun, T. Bruns, A. Täubner, Lifeng Yang, Aidong Liu, and Aibing Zuo, “Modifications of the sine-approximation method for primary vibration calibration by heterodyne interferometry,” Metrologia 46, 646 (2009).
http://dx.doi.org/10.1088/0026-1394/46/6/006
107.
107. M. Sinojmeri and W. Mache, “Development of the primary vibration calibration method using quadrature output Michelson interferometer,” Proc. SPIE 6345, 63451G (2006).
http://dx.doi.org/10.1117/12.693078
108.
108. European ProjectLaser vibrometry network: Systems and applications” (LAVINYA), EC Program Measurements and Testing, Thematic Networks, Contract G6RT-CT-2002-05093, Project Leader: E. P. Tomasini (2002).
109.
109. H.-J. von Martens, “Further Progress in Laser Vibrometer Calibration—Part 1: Generation of High-Frequency Vibrations at High Amplitudes,” Paper presented at the Final Meeting on European Project “Laser vibrometry network: Systems and applications” (LAVINYA), EC Program Measurements and Testing, Thematic Networks, Contract G6RT-CT-2002-05093, 2002, Project Leader: E. P. Tomasini. Ancona, 10th May 2005.
110.
110. W. S. Schkalikov, W. S. Pellinez, E. G. Isakovic, and N. J. Zuigan, Ismerenije parametrov vibrazii i udara (Measurement of parameters of vibration and shock) (Izdatelstvo Standartov, Moscow, 1980) (in Russian).
111.
111. A. Täubner, “Investigation of a piezoelectric vibration exciter S 101,” Physikalisch-Technische Bundesanstalt (PTB), unpublished report (1998).
112.
112. H.-J. von Martens, G. Silva Pineda, S. Rojas Ramires, and A. Ruis Rueda, “Experiments on the generation of large vibration amplitudes at high frequencies using a piezoelectric vibration exciter Type S 101,” unpublished report (Centro Nacional de Metrologia (CENAM), Queretaro, Mexico, 2004).
113.
113. JCGM 102:2011, Evaluation of Measurement Data—Supplement 2 to the Guide to the Expression of Uncertainty in Measurement: Extension to Any Number of Output Quantities (BIPM, Sèvres, 2011), see http://www.bipm.org/utils/common/documents/jcgm/JCGM_102_2011_E.pdf.
114.
114. JCGM 104:2009, Evaluation of Measurement Data: An Introduction to the Guide to the Expression of Uncertainty in Measurement, 1st ed. (BIPM, Sèvres, 2009), see http://www.bipm.org/utils/common/documents/jcgm/JCGM_104_2009_E.pdf.
115.
115. JCGM 106:2012, Evaluation of Measurement Data: The Role of Measurement Uncertainty in Conformity Assessment, 1st ed. (BIPM, Sèvres, 2009), see http://www.bipm.org/utils/common/documents/jcgm/JCGM_106_2012_E.pdf.
116.
116. H.-J. von Martens, “Evaluation of uncertainty in interferometric vibration measurements,” Proc. SPIE 4072, 82 (2000).
http://dx.doi.org/10.1117/12.386723
117.
117. H.-J. von Martens, “On the errors and uncertainties of interferometric measurements of linear and torsional vibrations,” Proc. SPIE 2358, 2 (1994).
http://dx.doi.org/10.1117/12.185325
118.
118. T. Usuda and T. Kurosava, “Calibration methods for vibration transducers and their uncertainties,” Metrologia 36, 375 (1999).
http://dx.doi.org/10.1088/0026-1394/36/4/17
119.
119. B. F. Payne and D. J. Evans, “Errors in accelerometer calibration using laser interferometry due to harmonic distortion and cross motion in the applied motion,” Proc. SPIE 4072, 102 (2000).
http://dx.doi.org/10.1117/12.386750
120.
120. G. Silva-Pineda and L. Ferrer-Argote, “On the estimation of uncertainties for the accelerometer calibration using laser interferometry,” Proc. SPIE 4072, 137 (2000).
http://dx.doi.org/10.1117/12.386718
121.
121. H. Nicklich and U. Bühn, “Practical experiences in primary vibration calibration using laser vibrometry: Measurement uncertainties in wide frequency range applications,” Proc. SPIE 5503, 442 (2004).
http://dx.doi.org/10.1117/12.579614
122.
122. C. S. Veldman, “The estimation of uncertainties in phase shift measurements using homodyne laser interferometry,” Proc. SPIE 6345, 634502 (2006).
http://dx.doi.org/10.1117/12.693096
123.
123. A. Oota, T. Usuda, T. Ishigami, H. Nozato, and Y. Hino, “Effect of demodulator unit on laser vibrometer calibration,” Proc. SPIE 7098, 70981J (2008).
http://dx.doi.org/10.1117/12.803331
124.
124. T. Bruns, A. Link, and A. Täubner, “The influence of different vibration exciter systems on high frequency primary calibration of single-ended accelerometers: II,” Metrologia 49(1), 27 (2012).
http://dx.doi.org/10.1088/0026-1394/49/1/005
125.
125. A. Cabral, M. I. Godinho, V. Oliveira, J. M. Rebordão, and M. C. Nunes, “Primary laser vibration metrology: evaluation of the rocking motion impact in the accuracy of acceleration measurements,” Proc. SPIE 7098, 70980Z (2008).
http://dx.doi.org/10.1117/12.803151
126.
126. G. P. Ripper, R. S. Dias, and G. A. Garcia, “Interferometric evaluation of the sensitivity of accelerometers to differential heating,” Proc. SPIE 7098, 70981L (2008).
http://dx.doi.org/10.1117/12.803342
127.
127. L. Wu, “A laser position sensing system for the study of vibration shaker tilting,” Can. Acoust. 38(3) (2010).
128.
128. C. Rembe, “Retardation effects in laser-Doppler measurements,” Proc. SPIE 7098, 709813 (2008).
http://dx.doi.org/10.1117/12.803157
129.
129. G. Siegmund, “Sources of measurement error in laser Doppler vibrometers and proposal for unified specifications,” Proc. SPIE 7098, 70980Y (2008).
http://dx.doi.org/10.1117/12.803150
130.
130. H.-J. von Martens, “Evaluation of uncertainty in measurements: Problems and tools,” Opt. Lasers Eng. 38, 185 (2002).
http://dx.doi.org/10.1016/S0143-8166(02)00010-6
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/12/10.1063/1.4845916
Loading
/content/aip/journal/rsi/84/12/10.1063/1.4845916
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/12/10.1063/1.4845916
2013-12-30
2014-09-01

Abstract

Traceability to the International System of Units has been established for vibration and shock measurements as specified in international document standards, recommendations, and regulations to ensure product quality, health, and safety. New and upgraded laser methods and techniques developed by national metrology institutes and by leading manufacturers in the past two decades have been swiftly specified as standard methods in the ISO 16063 series of international document standards. In ISO 16063-11:1999, three interferometric methods are specified for the primary calibration of vibration transducers (reference standard accelerometers) in a frequency range from 1 Hz to 10 kHz. In order to specify the same (modified) methods for the calibration of laser vibrometers (ISO 16063-41:2011), their applicability in an expanded frequency range was investigated. Steady-state sinusoidal vibrations were generated by piezoelectric actuators at specific frequencies up to 347 kHz (acceleration amplitudes up to 376 km/s2). The displacement amplitude, adjusted by the special interferometric method of coincidence to 158.2 nm (quarter the wavelength of the He-Ne laser light), was measured by the standardized interferometric methods of fringe counting and sine-approximation. The deviations between the measurement results of the three interferometric methods applied simultaneously were smaller than 1 %. The limits of measurement uncertainty specified in ISO 16063-11 between 1 Hz to 10 kHz were kept up to frequencies, which are orders of magnitude greater; the uncertainty limit 0.5 % specified at the reference frequency 160 Hz was not exceeded at 160 kHz. The reported results were considered during the development of ISO 16063-41 by specifying the instrumentation and procedures for performing calibrations of rectilinear laser vibrometers in the frequency range typically between 0.4 Hz and 50 kHz—the interferometric methods may be applied within expanded frequency ranges using refined techniques and procedures. It is concluded that calibration frequencies up to 0.5 MHz are attainable in compliance with the first international document standard for the calibration of laser vibrometers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/12/1.4845916.html;jsessionid=4g558nieg3k8p.x-aip-live-06?itemId=/content/aip/journal/rsi/84/12/10.1063/1.4845916&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Invited Article: Expanded and improved traceability of vibration measurements by laser interferometry
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/12/10.1063/1.4845916
10.1063/1.4845916
SEARCH_EXPAND_ITEM