1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/2/10.1063/1.4793229
1.
1. M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, Nat. Methods 8, 413 (2011).
http://dx.doi.org/10.1038/nmeth.1585
2.
2. D. Simanovskii, D. Palanker, K. Cohn, and T. Smith, Appl. Phys. Lett. 79, 1214 (2001).
http://dx.doi.org/10.1063/1.1395524
3.
3. B. Van Eerdenbrugh and L. S. Taylor, Int. J. Pharm. 417, 3 (2011).
http://dx.doi.org/10.1016/j.ijpharm.2010.12.011
4.
4. M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, Science 276, 1401 (1997).
http://dx.doi.org/10.1126/science.276.5317.1401
5.
5. K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, Nanotechnology 21, 185705 (2010).
http://dx.doi.org/10.1088/0957-4484/21/18/185705
6.
6. A. Kumar, H. A. Biebuyck, and G. M. Whitesides, Langmuir 10, 1498 (1994).
http://dx.doi.org/10.1021/la00017a030
7.
7. R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, Science 283, 661 (1999).
http://dx.doi.org/10.1126/science.283.5402.661
8.
8. Y. N. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
9.
9. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, Appl. Phys. Lett. 84, 5299 (2004).
http://dx.doi.org/10.1063/1.1766071
10.
10. P. E. Sheehan, L. J. Whitman, W. P. King, and B. A. Nelson, Appl. Phys. Lett. 85, 1589 (2004).
http://dx.doi.org/10.1063/1.1785860
11.
11. J. R. Felts, S. Somnath, R. H. Ewoldt, and W. P. King, Nanotechnology 23, 215301 (2012).
http://dx.doi.org/10.1088/0957-4484/23/21/215301
12.
12. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000).
http://dx.doi.org/10.1016/S0009-2614(99)01451-7
13.
13. A. Dazzi, R. Prazeres, E. Glotin, and J. M. Ortega, Opt. Lett. 30, 2388 (2005).
http://dx.doi.org/10.1364/OL.30.002388
14.
14. B. Knoll and F. Keilmann, Nature (London) 399, 134 (1999).
http://dx.doi.org/10.1038/20154
15.
15. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, Nature (London) 444, 740 (2006).
http://dx.doi.org/10.1038/nature05265
16.
16. A. C. Jones and M. B. Raschke, Nano Lett. 12, 1475 (2012).
http://dx.doi.org/10.1021/nl204201g
17.
17. F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, Nano Lett. 12, 3973 (2012).
http://dx.doi.org/10.1021/nl301159v
18.
18. S. Amarie, T. Ganz, and F. Keilmann, Opt. Express 17, 21794 (2009).
http://dx.doi.org/10.1364/OE.17.021794
19.
19. A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, Adv. Mater. 19, 2209 (2007).
http://dx.doi.org/10.1002/adma.200602303
20.
20. A. Dazzi, C. B. Prater, Q. Hu, D. B. Chase, J. F. Rabolt, and C. Marcott, Appl. Spectrosc. 66, 1365 (2012).
http://dx.doi.org/10.1366/12-06804
21.
21. J. R. Felts, K. Kjoller, M. Lo, C. B. Prater, and W. P. King, ACS Nano 6, 8015 (2012).
http://dx.doi.org/10.1021/nn302620f
22.
22. B. Van Eerdenbrugh, M. Lo, K. Kjoller, C. Marcott, and L. S. Taylor, Mol. Pharm. 9, 1459 (2012).
http://dx.doi.org/10.1021/mp300059z
23.
23. C. Marcott, M. Lo, K. Kjoller, C. Prater, and I. Noda, Appl. Spectrosc. 65, 1145 (2011).
http://dx.doi.org/10.1366/11-06341
24.
24. A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, Ultramicroscopy 108, 635 (2008).
http://dx.doi.org/10.1016/j.ultramic.2007.10.008
25.
25. C. Mayet, A. Dazzi, R. Prazeres, E. Allot, E. Glotin, and J. M. Ortega, Opt. Lett. 33, 1611 (2008).
http://dx.doi.org/10.1364/OL.33.001611
26.
26. C. Policar, J. B. Waern, M.-A. Plamont, S. Clède, C. Mayet, R. Prazeres, J.-M. Ortega, A. Vessières, and A. Dazzi, Angew. Chem. 123, 890 (2011).
http://dx.doi.org/10.1002/ange.201003161
27.
27. J. Houel, E. Homeyer, S. Sauvage, P. Boucaud, A. Dazzi, R. Prazeres, and J. M. Ortega, Opt. Express 17, 10887 (2009).
http://dx.doi.org/10.1364/OE.17.010887
28.
28. J. Houel, S. Sauvage, P. Boucaud, A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, A. Miard, and A. Lemaitre, Phys. Rev. Lett. 99, 217404 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.217404
29.
29. S. Sauvage, A. Driss, F. Réveret, P. Boucaud, A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortéga, A. Miard, Y. Halioua et al., Phys. Rev. B 83, 035302 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.035302
30.
30. F. Lu and M. A. Belkin, Opt. Express 19, 19942 (2011).
http://dx.doi.org/10.1364/OE.19.019942
31.
31. B. Lahiri, G. Holland, and A. Centrone, Small 9, 439 (2013).
http://dx.doi.org/10.1002/smll.201200788
32.
32. T. L. Bergman and F. P. Incropera, Fundamentals of Heat and Mass Transfer (Wiley, Hoboken, NJ, 2011), pp. 5882.
33.
33. D. Hansen and G. A. Bernier, Polym. Eng. Sci. 12, 204 (1972).
http://dx.doi.org/10.1002/pen.760120308
34.
34. U. Gaur and B. Wunderlich, J. Phys. Chem. Ref. Data 10, 119 (1981).
http://dx.doi.org/10.1063/1.555636
35.
35. N. Sankar and K. Ramachandran, J. Cryst. Growth 247, 157 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)01982-6
36.
36. A. Dazzi, F. Glotin, and R. Carminati, J. Appl. Phys. 107, 124519 (2010).
http://dx.doi.org/10.1063/1.3429214
37.
37. J. H. Ginsberg, Mechanical and Structural Vibrations: Theory and Applications (Wiley, New York, 2001), pp. 414498.
38.
38. J. A. Turner, S. Hirsekorn, U. Rabe, and W. Arnold, J. Appl. Phys. 82, 966 (1997).
http://dx.doi.org/10.1063/1.365935
39.
39. J. E. Sader, Rev. Sci. Instrum. 66, 4583 (1995).
http://dx.doi.org/10.1063/1.1145292
40.
40. M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, IEEE Trans. Signal Process. 46, 886 (1998).
http://dx.doi.org/10.1109/78.668544
41.
41. A. Grossmann and J. Morlet, SIAM J. Math. Anal. 15, 723 (1984).
http://dx.doi.org/10.1137/0515056
42.
42. J. Varesi and A. Majumdar, Appl. Phys. Lett. 72, 37 (1998).
http://dx.doi.org/10.1063/1.120638
43.
43. U. Rabe, S. Amelio, E. Kester, V. Scherer, S. Hirsekorn, and W. Arnold, Ultrasonics 38, 430 (2000).
http://dx.doi.org/10.1016/S0041-624X(99)00207-3
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/2/10.1063/1.4793229
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Graphical representation of AFM-IR on polymer nanostructures of differing size. The thermomechanical expansion of the absorbing polymer nanostructure shocks the AFM cantilever into oscillation. The deflection laser measures the cantilever response to the shock from the polymer structure. (b) An AFM image of polyethylene nanostructures fabricated using a heated AFM probe with heights ranging from 10 nm to 100 nm. Tip temperature, speed, and dwell time controlled the sizes of the fabricated structures.

Image of FIG. 2.

Click to view

FIG. 2.

(a) and (b) Illustration of the heat transfer within hemispherical and half-cylinder polymer nanostructures. Constant heat generation Q gen represents absorption during the laser pulse, and q air and q prism are the heat flows to the air and the prism from the structure. (c) Change in max structure temperature after the laser pulse as a function of time for structures with H = R = 100 nm and H = R = 300 nm. (d) and (e) Cooling time constant calculated for both a hemisphere and half-cylinder polymer structure for R between 0.1 and 1.0 μm and H = R, 0.1 μm, and 1 μm.

Image of FIG. 3.

Click to view

FIG. 3.

Frequency domain representation of the cantilever response to the thermomechanical expansion of the polymer nanostructures. Measurements are in blue and modeling results are in red. The polymer nanostructures have size (a) H = 2000 nm and R = 3000 nm, (b) H = 600 nm and R = 1000 nm, and (c) H = 100 nm and R = 400 nm. The insets show the raw, time-domain measurements of cantilever amplitude.

Image of FIG. 4.

Click to view

FIG. 4.

Normalized peak-to-peak measurements for a cantilever response during AFM-IR as a function of the center frequency of a 100 kHz bandpass filter. The peak-to-peak response for features 2000 nm, 600 nm, and 100 nm tall show that higher frequency vibrations contribute significant peak-to-peak signal for small structures.

Image of FIG. 5.

Click to view

FIG. 5.

Time domain response of the cantilever to a single AFM-IR laser pulse, and the corresponding time-frequency domain response. Here, the polymer nanostructure is 70 nm tall PE, and the laser wavenumber is 2920 cm−1. (a) Cantilever amplitude as a function of time. (b) The cantilever response as both a function of time and frequency computed using a continuous Morlet wavelet transform. The plot shows the time and frequency windows that contain the highest signal to noise. The regions not contained within both windows are mostly noise, and can be discarded.

Image of FIG. 6.

Click to view

FIG. 6.

Measured absorption spectra for PE nanostructures over the spectral range 2800–3000 cm−1 for heights of (a)–(c) 70 nm and (d)–(f) 15 nm. The black line is the absorption spectra for a large feature, which compares well with bulk measurements. (a) and (d) Peak-to-peak measurements of the cantilever. (b) and (e) Average amplitude measurements of the wavelet transformed response with both time and frequency windows applied. (c)–(f) Average amplitude measurements of the wavelet transformed response with time and frequency windows.

Loading

Article metrics loading...

/content/aip/journal/rsi/84/2/10.1063/1.4793229
2013-02-27
2014-04-19

Abstract

We measure the infrared spectra of polyethylene nanostructures of height 15 nm using atomic force microscope infrared spectroscopy (AFM-IR), which is about an order of magnitude improvement over state of the art. In AFM-IR, infrared light incident upon a sample induces photothermal expansion, which is measured by an AFM tip. The thermomechanical response of the sample-tip-cantilever system results in cantilever vibrations that vary in time and frequency. A time-frequency domain analysis of the cantilever vibration signal reveals how sample thermomechanical response and cantilever dynamics affect the AFM-IR signal. By appropriately filtering the cantilever vibration signal in both the time domain and the frequency domain, it is possible to measure infrared absorption spectra on polyethylene nanostructures as small as 15 nm.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/2/1.4793229.html;jsessionid=kxv776xwwjw3.x-aip-live-06?itemId=/content/aip/journal/rsi/84/2/10.1063/1.4793229&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/2/10.1063/1.4793229
10.1063/1.4793229
SEARCH_EXPAND_ITEM