1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/2/10.1063/1.4793229
1.
1. M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, Nat. Methods 8, 413 (2011).
http://dx.doi.org/10.1038/nmeth.1585
2.
2. D. Simanovskii, D. Palanker, K. Cohn, and T. Smith, Appl. Phys. Lett. 79, 1214 (2001).
http://dx.doi.org/10.1063/1.1395524
3.
3. B. Van Eerdenbrugh and L. S. Taylor, Int. J. Pharm. 417, 3 (2011).
http://dx.doi.org/10.1016/j.ijpharm.2010.12.011
4.
4. M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, Science 276, 1401 (1997).
http://dx.doi.org/10.1126/science.276.5317.1401
5.
5. K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, Nanotechnology 21, 185705 (2010).
http://dx.doi.org/10.1088/0957-4484/21/18/185705
6.
6. A. Kumar, H. A. Biebuyck, and G. M. Whitesides, Langmuir 10, 1498 (1994).
http://dx.doi.org/10.1021/la00017a030
7.
7. R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, Science 283, 661 (1999).
http://dx.doi.org/10.1126/science.283.5402.661
8.
8. Y. N. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
9.
9. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, Appl. Phys. Lett. 84, 5299 (2004).
http://dx.doi.org/10.1063/1.1766071
10.
10. P. E. Sheehan, L. J. Whitman, W. P. King, and B. A. Nelson, Appl. Phys. Lett. 85, 1589 (2004).
http://dx.doi.org/10.1063/1.1785860
11.
11. J. R. Felts, S. Somnath, R. H. Ewoldt, and W. P. King, Nanotechnology 23, 215301 (2012).
http://dx.doi.org/10.1088/0957-4484/23/21/215301
12.
12. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000).
http://dx.doi.org/10.1016/S0009-2614(99)01451-7
13.
13. A. Dazzi, R. Prazeres, E. Glotin, and J. M. Ortega, Opt. Lett. 30, 2388 (2005).
http://dx.doi.org/10.1364/OL.30.002388
14.
14. B. Knoll and F. Keilmann, Nature (London) 399, 134 (1999).
http://dx.doi.org/10.1038/20154
15.
15. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, Nature (London) 444, 740 (2006).
http://dx.doi.org/10.1038/nature05265
16.
16. A. C. Jones and M. B. Raschke, Nano Lett. 12, 1475 (2012).
http://dx.doi.org/10.1021/nl204201g
17.
17. F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, Nano Lett. 12, 3973 (2012).
http://dx.doi.org/10.1021/nl301159v
18.
18. S. Amarie, T. Ganz, and F. Keilmann, Opt. Express 17, 21794 (2009).
http://dx.doi.org/10.1364/OE.17.021794
19.
19. A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, Adv. Mater. 19, 2209 (2007).
http://dx.doi.org/10.1002/adma.200602303
20.
20. A. Dazzi, C. B. Prater, Q. Hu, D. B. Chase, J. F. Rabolt, and C. Marcott, Appl. Spectrosc. 66, 1365 (2012).
http://dx.doi.org/10.1366/12-06804
21.
21. J. R. Felts, K. Kjoller, M. Lo, C. B. Prater, and W. P. King, ACS Nano 6, 8015 (2012).
http://dx.doi.org/10.1021/nn302620f
22.
22. B. Van Eerdenbrugh, M. Lo, K. Kjoller, C. Marcott, and L. S. Taylor, Mol. Pharm. 9, 1459 (2012).
http://dx.doi.org/10.1021/mp300059z
23.
23. C. Marcott, M. Lo, K. Kjoller, C. Prater, and I. Noda, Appl. Spectrosc. 65, 1145 (2011).
http://dx.doi.org/10.1366/11-06341
24.
24. A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, Ultramicroscopy 108, 635 (2008).
http://dx.doi.org/10.1016/j.ultramic.2007.10.008
25.
25. C. Mayet, A. Dazzi, R. Prazeres, E. Allot, E. Glotin, and J. M. Ortega, Opt. Lett. 33, 1611 (2008).
http://dx.doi.org/10.1364/OL.33.001611
26.
26. C. Policar, J. B. Waern, M.-A. Plamont, S. Clède, C. Mayet, R. Prazeres, J.-M. Ortega, A. Vessières, and A. Dazzi, Angew. Chem. 123, 890 (2011).
http://dx.doi.org/10.1002/ange.201003161
27.
27. J. Houel, E. Homeyer, S. Sauvage, P. Boucaud, A. Dazzi, R. Prazeres, and J. M. Ortega, Opt. Express 17, 10887 (2009).
http://dx.doi.org/10.1364/OE.17.010887
28.
28. J. Houel, S. Sauvage, P. Boucaud, A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, A. Miard, and A. Lemaitre, Phys. Rev. Lett. 99, 217404 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.217404
29.
29. S. Sauvage, A. Driss, F. Réveret, P. Boucaud, A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortéga, A. Miard, Y. Halioua et al., Phys. Rev. B 83, 035302 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.035302
30.
30. F. Lu and M. A. Belkin, Opt. Express 19, 19942 (2011).
http://dx.doi.org/10.1364/OE.19.019942
31.
31. B. Lahiri, G. Holland, and A. Centrone, Small 9, 439 (2013).
http://dx.doi.org/10.1002/smll.201200788
32.
32. T. L. Bergman and F. P. Incropera, Fundamentals of Heat and Mass Transfer (Wiley, Hoboken, NJ, 2011), pp. 5882.
33.
33. D. Hansen and G. A. Bernier, Polym. Eng. Sci. 12, 204 (1972).
http://dx.doi.org/10.1002/pen.760120308
34.
34. U. Gaur and B. Wunderlich, J. Phys. Chem. Ref. Data 10, 119 (1981).
http://dx.doi.org/10.1063/1.555636
35.
35. N. Sankar and K. Ramachandran, J. Cryst. Growth 247, 157 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)01982-6
36.
36. A. Dazzi, F. Glotin, and R. Carminati, J. Appl. Phys. 107, 124519 (2010).
http://dx.doi.org/10.1063/1.3429214
37.
37. J. H. Ginsberg, Mechanical and Structural Vibrations: Theory and Applications (Wiley, New York, 2001), pp. 414498.
38.
38. J. A. Turner, S. Hirsekorn, U. Rabe, and W. Arnold, J. Appl. Phys. 82, 966 (1997).
http://dx.doi.org/10.1063/1.365935
39.
39. J. E. Sader, Rev. Sci. Instrum. 66, 4583 (1995).
http://dx.doi.org/10.1063/1.1145292
40.
40. M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, IEEE Trans. Signal Process. 46, 886 (1998).
http://dx.doi.org/10.1109/78.668544
41.
41. A. Grossmann and J. Morlet, SIAM J. Math. Anal. 15, 723 (1984).
http://dx.doi.org/10.1137/0515056
42.
42. J. Varesi and A. Majumdar, Appl. Phys. Lett. 72, 37 (1998).
http://dx.doi.org/10.1063/1.120638
43.
43. U. Rabe, S. Amelio, E. Kester, V. Scherer, S. Hirsekorn, and W. Arnold, Ultrasonics 38, 430 (2000).
http://dx.doi.org/10.1016/S0041-624X(99)00207-3
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/2/10.1063/1.4793229
Loading
/content/aip/journal/rsi/84/2/10.1063/1.4793229
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/2/10.1063/1.4793229
2013-02-27
2014-10-30

Abstract

We measure the infrared spectra of polyethylene nanostructures of height 15 nm using atomic force microscope infrared spectroscopy (AFM-IR), which is about an order of magnitude improvement over state of the art. In AFM-IR, infrared light incident upon a sample induces photothermal expansion, which is measured by an AFM tip. The thermomechanical response of the sample-tip-cantilever system results in cantilever vibrations that vary in time and frequency. A time-frequency domain analysis of the cantilever vibration signal reveals how sample thermomechanical response and cantilever dynamics affect the AFM-IR signal. By appropriately filtering the cantilever vibration signal in both the time domain and the frequency domain, it is possible to measure infrared absorption spectra on polyethylene nanostructures as small as 15 nm.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/2/1.4793229.html;jsessionid=5ueusutpkeges.x-aip-live-06?itemId=/content/aip/journal/rsi/84/2/10.1063/1.4793229&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/2/10.1063/1.4793229
10.1063/1.4793229
SEARCH_EXPAND_ITEM