1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/3/10.1063/1.4792841
1.
1. J. P. Lu, Phys. Rev. Lett. 79, 1297 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1297
2.
2. S. Sinha, S. Barjami, G. Iannacchione, A. Schwab, and G. Muench, J. Nanopart. Res. 7, 651 (2005).
http://dx.doi.org/10.1007/s11051-005-8382-9
3.
3. F. Volklein and E. Kessler, Measurement 5, 38 (1987).
http://dx.doi.org/10.1016/0263-2241(87)90027-3
4.
4. J. Che, T. Cagin, and W. A. Goddard III, Nanotechnol. 11, 65 (2000).
http://dx.doi.org/10.1088/0957-4484/11/2/305
5.
5. D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, Phys. Rev. B 66, 165440 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.165440
6.
6. X. J. Hu, A. A. Padilla, J. Xu, T. S. Fisher, and K. E. Goodson, J. Heat Transfer 128, 1109 (2006).
http://dx.doi.org/10.1115/1.2352778
7.
7. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.215502
8.
8. J. Hone, M. Whitney, C. Piskoti, and A. Zettl, Phys. Rev. B 59, R2514 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.R2514
9.
9. H. Wang and M. Sen, Int. J. Heat Mass Transfer 52, 21022109 (2009).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.10.020
10.
10. R. Shrestha, T. Y. Choi, W. Chang, and D. Kim, Sensors 11, 8826 (2011).
http://dx.doi.org/10.3390/s110908826
11.
11. G. Fish, O. Bouevitch, S. Kokotov, K. Lieberman, D. Palanker, I. Turovets, and A. Lewis, Rev. Sci. Instrum. 66, 3300 (1995).
http://dx.doi.org/10.1063/1.1145498
12.
12. M. S. Watanabe, N. Kakuta, K. Mabuchi, and Y. Yamada, “Micro-thermocouple probe for measurement of cellular thermal responses,” in Proceedings of the 27th Annual Conference of the IEEE-EMB (IEEE, Shanghai, China, 2005), pp. 48584861.
13.
13. A. Mubarak, E. Hamzah, and M. R. M. Toft, Jurnal Mekanikal 20, 42 (2005).
14.
14. B. Navinšek, P. Panjan, and I. Milošev, Surf. Coat. Technol. 116–119, 476 (1999).
http://dx.doi.org/10.1016/S0257-8972(99)00145-0
15.
15. D. E. Hill, L. Williams, G. Mah, and W. L. Bradley, Thin Solid Films 40, 263 (1977).
http://dx.doi.org/10.1016/0040-6090(77)90127-4
16.
16. J. P. Holman, Experimental Methods for Engineers (McGraw Hill, New York, 1994).
17.
17. A. F. Mills, Heat and Mass Transfer (CRC, California, 1995).
18.
18. H. S. Jaeger, Conduction of Heat in Solids (Oxford University Press, New York, 1986).
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/3/10.1063/1.4792841
Loading
/content/aip/journal/rsi/84/3/10.1063/1.4792841
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/3/10.1063/1.4792841
2013-03-01
2014-09-17

Abstract

In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 μm to 5 μm and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady heat conduction model to correlate the temperature gradient to the thermal conductivity of the film. We measured the average thermal conductivity of CNT film as 74.3 ± 7.9 W m−1 K−1 at room temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/3/1.4792841.html;jsessionid=5fogqqwflfgqv.x-aip-live-02?itemId=/content/aip/journal/rsi/84/3/10.1063/1.4792841&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/3/10.1063/1.4792841
10.1063/1.4792841
SEARCH_EXPAND_ITEM