1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Coupling a Knudsen reactor with the short lived radioactive tracer 13N for atmospheric chemistry studies
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/3/10.1063/1.4793405
1.
1. D. M. Cwiertny, M. A. Young, and V. H. Grassian, Annu. Rev. Phys. Chem. 59, 27 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093630
2.
2. C. Voigt, B. Kärcher, H. Schlager, C. Schiller, M. Krämer, M. de Reus, H. Vössing, S. Borrmann, and V. Mitev, Atmos. Chem. Phys. 7, 3373 (2007).
http://dx.doi.org/10.5194/acp-7-3373-2007
3.
3. P. J. Crutzen and F. Arnold, Nature (London) 324, 651 (1986).
http://dx.doi.org/10.1038/324651a0
4.
4. T. Huthwelker, M. Ammann, and T. Peter, Chem. Rev. 106, 1375 (2006).
http://dx.doi.org/10.1021/cr020506v
5.
5. P. von Hessberg, N. Pouvesle, A. K. Winkler, G. Schuster, and J. N. Crowley, Phys. Chem. Chem. Phys. 10, 2345 (2008).
http://dx.doi.org/10.1039/b800831k
6.
6. M. Ullerstam, T. Thornberry, and J. P. D. Abbatt, Faraday Discuss. 130, 211 (2005).
http://dx.doi.org/10.1039/b417418f
7.
7. C. J. Percival, J. C. Mossinger, and R. A. Cox, Phys. Chem. Chem. Phys. 1, 4565 (1999).
http://dx.doi.org/10.1039/a904651h
8.
8. J. T. Jayne, S. X. Duan, P. Davidovits, D. R. Worsnop, M. S. Zahniser, and C. E. Kolb, J. Phys. Chem. 96, 5452 (1992).
http://dx.doi.org/10.1021/j100192a049
9.
9. J. R. Morris, P. Behr, M. D. Antman, B. R. Ringeisen, J. Splan, and G. M. Nathanson, J. Phys. Chem. A 104, 6738 (2000).
http://dx.doi.org/10.1021/jp000105o
10.
10. A. Aguzzi and M. J. Rossi, Phys. Chem. Chem. Phys. 3, 3707 (2001).
http://dx.doi.org/10.1039/b100546o
11.
11. P. K. Hudson, J. E. Shilling, M. A. Tolbert, and O. B. Toon, J. Phys. Chem. A 106, 9874 (2002).
http://dx.doi.org/10.1021/jp020508j
12.
12. M. A. Zondlo, S. B. Barone, and M. A. Tolbert, Geophys. Res. Lett. 24, 1391, doi:10.1029/97GL01287 (1997).
http://dx.doi.org/10.1029/97GL01287
13.
13. A. Křepelová, J. Newberg, T. Huthwelker, H. Bluhm, and M. Ammann, Phys. Chem. Chem. Phys. 12, 8870 (2010).
http://dx.doi.org/10.1039/c0cp00359j
14.
14. C. E. Kolb, R. A. Cox, J. P. D. Abbatt, M. Ammann, E. J. Davis, D. J. Donaldson, B. C. Garrett, C. George, P. T. Griffiths, D. R. Hanson, M. Kulmala, G. McFiggans, U. Poschl, I. Riipinen, M. J. Rossi, Y. Rudich, P. E. Wagner, P. M. Winkler, D. R. Worsnop, and C. D. O’ Dowd, Atmos. Chem. Phys. 10, 10561 (2010).
http://dx.doi.org/10.5194/acp-10-10561-2010
15.
15. D. Hanson and K. Mauersberger, Geophys. Res. Lett. 15, 855, doi:10.1029/GL015i008p00855 (1988).
http://dx.doi.org/10.1029/GL015i008p00855
16.
16. P. K. Hudson, M. A. Zondlo, and M. A. Tolbert, J. Phys. Chem. A 106, 2882 (2002).
http://dx.doi.org/10.1021/jp012718m
17.
17. R. G. Hynes, M. A. Fernandez, and R. A. Cox, J. Geophys. Res., [Atmos.] 107, 4797, doi:10.1029/2001JD001557 (2002).
http://dx.doi.org/10.1029/2001JD001557
18.
18. O. P. Arora, D. J. Cziczo, A. M. Morgan, J. P. D. Abbatt, and R. F. Niedziela, Geophys. Res. Lett. 26, 3621, doi:10.1029/1999GL010881 (1999).
http://dx.doi.org/10.1029/1999GL010881
19.
19. D. M. Golden, G. N. Spokes, and S. W. Benson, Angew. Chem., Int. Ed. 12, 534 (1973).
http://dx.doi.org/10.1002/anie.197305341
20.
20. F. Caloz, F. F. Fenter, K. D. Tabor, and M. J. Rossi, Rev. Sci. Instrum. 68, 3172 (1997).
http://dx.doi.org/10.1063/1.1148263
21.
21. P. Li, H. A. Al-Abadleh, and V. H. Grassian, J. Phys. Chem. A 106, 1210 (2002).
http://dx.doi.org/10.1021/jp011828q
22.
22. M. Ammann, Radiochim. Acta 89, 831 (2001).
http://dx.doi.org/10.1524/ract.2001.89.11-12.831
23.
23. A. Vlasenko, T. Huthwelker, H. W. Gäggeler, and M. Ammann, Phys. Chem. Chem. Phys. 11, 7921 (2009).
http://dx.doi.org/10.1039/b904290n
24.
24. T. Bartels-Rausch, B. Eichler, P. Zimmermann, H. W. Gäggeler, and M. Ammann, Atmos. Chem. Phys. 2, 235 (2002).
http://dx.doi.org/10.5194/acp-2-235-2002
25.
25. B. R. Pinzer, M. Kerbrat, T. Huthwelker, H. W. Gäggeler, M. Schneebeli, and M. Ammann, J. Geophys. Res. 115, D03304, doi:10.1029/2009JD012459 (2010).
http://dx.doi.org/10.1029/2009JD012459
26.
26. M. Kerbrat, T. Huthwelker, H. W. Gäggeler, and M. Ammann, J. Phys. Chem. C 114, 2208 (2010).
http://dx.doi.org/10.1021/jp909535c
27.
27. C. Guimbaud, F. Arens, L. Gutzwiller, H. W. Gäggeler, and M. Ammann, Atmos. Chem. Phys. 2, 249 (2002).
http://dx.doi.org/10.5194/acp-2-249-2002
28.
28. H. B. Singh, L. Salas, D. Herlth, R. Kolyer, E. Czech, M. Avery, J. H. Crawford, R. B. Pierce, G. W. Sachse, D. R. Blake, R. C. Cohen, T. H. Bertram, A. Perring, P. J. Wooldridge, J. Dibb, G. Huey, R. C. Hudman, S. Turquety, L. K. Emmons, F. Flocke, Y. Tang, G. R. Carmichael, and L. W. Horowitz, J. Geophys. Res. 112, D12S04, doi:10.1029/2006JD007664 (2007).
http://dx.doi.org/10.1029/2006JD007664
29.
29. R. S. Braman, M. A. de la Cantera, and X. H. Qing, Anal. Chem. 58, 1537 (1986).
http://dx.doi.org/10.1021/ac00298a060
30.
30. F. F. Fenter, F. Caloz, and M. J. Rossi, J. Phys. Chem. 98, 9801 (1994).
http://dx.doi.org/10.1021/j100090a014
31.
31. F. F. Fenter, F. Caloz, and M. J. Rossi, Rev. Sci. Instrum. 68, 3180 (1997).
http://dx.doi.org/10.1063/1.1148264
32.
32. J. Marti and K. Mauersberger, Geophys. Res. Lett. 20, 363, doi:10.1029/93GL00105 (1993).
http://dx.doi.org/10.1029/93GL00105
33.
33. M. Ammann, U. Pöschl, and Y. Rudich, Phys. Chem. Chem. Phys. 5, 351 (2003).
http://dx.doi.org/10.1039/b208708a
34.
34. U. Pöschl, Y. Rudich, and M. Ammann, Atmos. Chem. Phys. 7, 5989 (2007).
http://dx.doi.org/10.5194/acp-7-5989-2007
35.
35. L. Chu, G. W. Diao, and L. T. Chu, J. Phys. Chem. A 104, 3150 (2000).
http://dx.doi.org/10.1021/jp9937151
36.
36. J. N. Crowley, M. Ammann, R. A. Cox, R. G. Hynes, M. E. Jenkin, A. Mellouki, M. J. Rossi, J. Troe, and T. J. Wallington, Atmos. Chem. Phys. 10, 9059 (2010).
http://dx.doi.org/10.5194/acp-10-9059-2010
37.
37. R. A. Cox, M. A. Fernandez, A. Symington, M. Ullerstam, and J. P. D. Abbatt, Phys. Chem. Chem. Phys. 7, 3434 (2005).
http://dx.doi.org/10.1039/b506683b
38.
38. P. Danckwerts, Gas-Liquid Reactions (McGraw-Hill, New York, 1970).
39.
39. D. R. Hanson, A. R. Ravishankara, and S. Solomon, J. Geophys. Res., [Atmos.] 99, 3615, doi:10.1029/93JD02932 (1994).
http://dx.doi.org/10.1029/93JD02932
40.
40. M. Wutz, H. Adam, and W. Walcher, Theorie und Praxis der Vakuumtechnik (Vieweg, Braunschweig, 1988).
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/3/10.1063/1.4793405
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic overview of the system: (a) the pre-concentrator, (b) the synthesis step, (shown for HONO synthesis), (c) the control of the synthesis efficiency, (d) the differential pumping stage and water supply, and (e) the reaction chamber with the subsequent chemical trap and the (NaI) detectors.

Image of FIG. 2.

Click to view

FIG. 2.

Unloading characteristics of the pre-concentrator for (a) continuous mode and (b) pulse mode operation. The black lines denote the temperature of the two tubes (solid line: tube A; dotted line: tube B). The resulting 13NO concentration measured at detector D 1 is given in red. The cycle switches are indicated with the background color.

Image of FIG. 3.

Click to view

FIG. 3.

Cross section of the reactor chamber and the cooling system.

Image of FIG. 4.

Click to view

FIG. 4.

Model system and simulated signals for KC/MS and KC/T. The considered processes are shown in (a) and (b): constant flow to the reactor (F 0) and adsorption to (k uni) and desorption from (k d) the substrate, as well as escape form the reactor (k esc) and radioactive decay (λ). The signals in (c)–(f) for time t < 0 are given for steady state conditions with the plunger still being closed. The plunger is lifted at t = 0, which then initiates the exchange process between gas phase and substrate. (c) and (d) are simulated with k d = 0 and a constant value for k uni. (e) and (f) are calculated for a constant value k d > 0. The signal shape of (e) and (f) is explained in Sec. III D . (d) and (f) were simulated with the same γ13N and therefore exhibit the same steady state levels.

Image of FIG. 5.

Click to view

FIG. 5.

Comparison of measurement and parameter fit for HONO uptake on ice at 205 K. (a) Red: incoming 13N pulses, as detected by D 1 (compare Fig. 1 ). (b) Green: count rate R KC for 30 s integration time. Black: simulation results based on pulse shape and the response λeff. (c) Blue: count rate R trap, also 30 s integration time. Black: Calculated signal for irreversible uptake.

Image of FIG. 6.

Click to view

FIG. 6.

Stability of the determination of the kinetic parameters based on the measurement on γ13N and λeff. The coefficients αseff) in black, k deff) in blue, and calculated from these, K lin, Ceff) in red, are obtained from Eqs. (24) and (25) for the fixed value of . The comparison with the measurement for λeff (vertical dashed line) determines the values for the kinetic parameters (big dots). The gray shaded area indicates the uncertainty in λeff. The influence of the uncertainty in γ13N, HONO is not shown for clarity.

Image of FIG. 7.

Click to view

FIG. 7.

Typical count rates at the reactor (R KC, green) and the trap (R trap, blue) for experiments with HNO3. The dark gray areas indicate the time intervals during which valve V 1 was open. The light gray areas mark, how long the cell was operated without temperature changes after closing V 1. Experimental run (a) was performed with vapor deposited ice at T = 205 K, run (b) with ice at T < 190 K. Run (c) was a reference experiment with open plunger and the ice free gold surface at T = 283 K. The black lines are exponential fits to the decay of 13N. The integrated signals I KC and I trap are obtained by adding the extrapolated count rates of the current run and subtracting the extrapolated count rates of the previous run (black dashed lines). For runs (a) and (b), we obtained and , respectively. The wall loss was , which was consistent with three other reference experiments performed that day.

Image of FIG. 8.

Click to view

FIG. 8.

Range for the kinetic parameters for HNO3 adsorption on ice at 205 K, similar to Fig. 6 . For the measured value , k d, αs, and K lin, C are plotted as functions of λeff as blue, black, and red solid line, respectively. The dotted and dashed lines are calculated with the lower and upper error for , respectively. The lower bounds for αs and K lin, C are shown as black and red stars. Note that the range for λeff is sensitive to and significantly smaller than the corresponding range for HONO, compare Fig. 6 .

Image of FIG. 9.

Click to view

FIG. 9.

Schematic of the calibration procedure for k esc (a), the geometry of the orifice (b) and calibration results for the effective orifice area A esc, eff as a function of the Knudsen number Kn for different inert gases of the 2.5 mm i.d. orifice (c).

Tables

Generic image for table

Click to view

Table I.

Geometric properties of the reaction chamber.

Loading

Article metrics loading...

/content/aip/journal/rsi/84/3/10.1063/1.4793405
2013-03-04
2014-04-18

Abstract

A Knudsen cell flow reactor was coupled to an online gas phase source of the short-lived radioactive tracer 13N to study the adsorption of nitrogen oxides on ice at temperatures relevant for the upper troposphere. This novel approach has several benefits over the conventional coupling of a Knudsen cell with a mass spectrometer. Experiments at lower partial pressures close to atmospheric conditions are possible. The uptake to the substrate is a direct observable of the experiment. Operation of the experiment in continuous or pulse mode allows to retrieve steady state uptake kinetics and more details of adsorption and desorption kinetics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/3/1.4793405.html;jsessionid=1mbc0nhk933f3.x-aip-live-02?itemId=/content/aip/journal/rsi/84/3/10.1063/1.4793405&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Coupling a Knudsen reactor with the short lived radioactive tracer 13N for atmospheric chemistry studies
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/3/10.1063/1.4793405
10.1063/1.4793405
SEARCH_EXPAND_ITEM