Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. M. Cwiertny, M. A. Young, and V. H. Grassian, Annu. Rev. Phys. Chem. 59, 27 (2008).
2. C. Voigt, B. Kärcher, H. Schlager, C. Schiller, M. Krämer, M. de Reus, H. Vössing, S. Borrmann, and V. Mitev, Atmos. Chem. Phys. 7, 3373 (2007).
3. P. J. Crutzen and F. Arnold, Nature (London) 324, 651 (1986).
4. T. Huthwelker, M. Ammann, and T. Peter, Chem. Rev. 106, 1375 (2006).
5. P. von Hessberg, N. Pouvesle, A. K. Winkler, G. Schuster, and J. N. Crowley, Phys. Chem. Chem. Phys. 10, 2345 (2008).
6. M. Ullerstam, T. Thornberry, and J. P. D. Abbatt, Faraday Discuss. 130, 211 (2005).
7. C. J. Percival, J. C. Mossinger, and R. A. Cox, Phys. Chem. Chem. Phys. 1, 4565 (1999).
8. J. T. Jayne, S. X. Duan, P. Davidovits, D. R. Worsnop, M. S. Zahniser, and C. E. Kolb, J. Phys. Chem. 96, 5452 (1992).
9. J. R. Morris, P. Behr, M. D. Antman, B. R. Ringeisen, J. Splan, and G. M. Nathanson, J. Phys. Chem. A 104, 6738 (2000).
10. A. Aguzzi and M. J. Rossi, Phys. Chem. Chem. Phys. 3, 3707 (2001).
11. P. K. Hudson, J. E. Shilling, M. A. Tolbert, and O. B. Toon, J. Phys. Chem. A 106, 9874 (2002).
12. M. A. Zondlo, S. B. Barone, and M. A. Tolbert, Geophys. Res. Lett. 24, 1391, doi:10.1029/97GL01287 (1997).
13. A. Křepelová, J. Newberg, T. Huthwelker, H. Bluhm, and M. Ammann, Phys. Chem. Chem. Phys. 12, 8870 (2010).
14. C. E. Kolb, R. A. Cox, J. P. D. Abbatt, M. Ammann, E. J. Davis, D. J. Donaldson, B. C. Garrett, C. George, P. T. Griffiths, D. R. Hanson, M. Kulmala, G. McFiggans, U. Poschl, I. Riipinen, M. J. Rossi, Y. Rudich, P. E. Wagner, P. M. Winkler, D. R. Worsnop, and C. D. O’ Dowd, Atmos. Chem. Phys. 10, 10561 (2010).
15. D. Hanson and K. Mauersberger, Geophys. Res. Lett. 15, 855, doi:10.1029/GL015i008p00855 (1988).
16. P. K. Hudson, M. A. Zondlo, and M. A. Tolbert, J. Phys. Chem. A 106, 2882 (2002).
17. R. G. Hynes, M. A. Fernandez, and R. A. Cox, J. Geophys. Res., [Atmos.] 107, 4797, doi:10.1029/2001JD001557 (2002).
18. O. P. Arora, D. J. Cziczo, A. M. Morgan, J. P. D. Abbatt, and R. F. Niedziela, Geophys. Res. Lett. 26, 3621, doi:10.1029/1999GL010881 (1999).
19. D. M. Golden, G. N. Spokes, and S. W. Benson, Angew. Chem., Int. Ed. 12, 534 (1973).
20. F. Caloz, F. F. Fenter, K. D. Tabor, and M. J. Rossi, Rev. Sci. Instrum. 68, 3172 (1997).
21. P. Li, H. A. Al-Abadleh, and V. H. Grassian, J. Phys. Chem. A 106, 1210 (2002).
22. M. Ammann, Radiochim. Acta 89, 831 (2001).
23. A. Vlasenko, T. Huthwelker, H. W. Gäggeler, and M. Ammann, Phys. Chem. Chem. Phys. 11, 7921 (2009).
24. T. Bartels-Rausch, B. Eichler, P. Zimmermann, H. W. Gäggeler, and M. Ammann, Atmos. Chem. Phys. 2, 235 (2002).
25. B. R. Pinzer, M. Kerbrat, T. Huthwelker, H. W. Gäggeler, M. Schneebeli, and M. Ammann, J. Geophys. Res. 115, D03304, doi:10.1029/2009JD012459 (2010).
26. M. Kerbrat, T. Huthwelker, H. W. Gäggeler, and M. Ammann, J. Phys. Chem. C 114, 2208 (2010).
27. C. Guimbaud, F. Arens, L. Gutzwiller, H. W. Gäggeler, and M. Ammann, Atmos. Chem. Phys. 2, 249 (2002).
28. H. B. Singh, L. Salas, D. Herlth, R. Kolyer, E. Czech, M. Avery, J. H. Crawford, R. B. Pierce, G. W. Sachse, D. R. Blake, R. C. Cohen, T. H. Bertram, A. Perring, P. J. Wooldridge, J. Dibb, G. Huey, R. C. Hudman, S. Turquety, L. K. Emmons, F. Flocke, Y. Tang, G. R. Carmichael, and L. W. Horowitz, J. Geophys. Res. 112, D12S04, doi:10.1029/2006JD007664 (2007).
29. R. S. Braman, M. A. de la Cantera, and X. H. Qing, Anal. Chem. 58, 1537 (1986).
30. F. F. Fenter, F. Caloz, and M. J. Rossi, J. Phys. Chem. 98, 9801 (1994).
31. F. F. Fenter, F. Caloz, and M. J. Rossi, Rev. Sci. Instrum. 68, 3180 (1997).
32. J. Marti and K. Mauersberger, Geophys. Res. Lett. 20, 363, doi:10.1029/93GL00105 (1993).
33. M. Ammann, U. Pöschl, and Y. Rudich, Phys. Chem. Chem. Phys. 5, 351 (2003).
34. U. Pöschl, Y. Rudich, and M. Ammann, Atmos. Chem. Phys. 7, 5989 (2007).
35. L. Chu, G. W. Diao, and L. T. Chu, J. Phys. Chem. A 104, 3150 (2000).
36. J. N. Crowley, M. Ammann, R. A. Cox, R. G. Hynes, M. E. Jenkin, A. Mellouki, M. J. Rossi, J. Troe, and T. J. Wallington, Atmos. Chem. Phys. 10, 9059 (2010).
37. R. A. Cox, M. A. Fernandez, A. Symington, M. Ullerstam, and J. P. D. Abbatt, Phys. Chem. Chem. Phys. 7, 3434 (2005).
38. P. Danckwerts, Gas-Liquid Reactions (McGraw-Hill, New York, 1970).
39. D. R. Hanson, A. R. Ravishankara, and S. Solomon, J. Geophys. Res., [Atmos.] 99, 3615, doi:10.1029/93JD02932 (1994).
40. M. Wutz, H. Adam, and W. Walcher, Theorie und Praxis der Vakuumtechnik (Vieweg, Braunschweig, 1988).

Data & Media loading...


Article metrics loading...



A Knudsen cell flow reactor was coupled to an online gas phase source of the short-lived radioactive tracer 13N to study the adsorption of nitrogen oxides on ice at temperatures relevant for the upper troposphere. This novel approach has several benefits over the conventional coupling of a Knudsen cell with a mass spectrometer. Experiments at lower partial pressures close to atmospheric conditions are possible. The uptake to the substrate is a direct observable of the experiment. Operation of the experiment in continuous or pulse mode allows to retrieve steady state uptake kinetics and more details of adsorption and desorption kinetics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd