1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A flash-lamp based device for fluorescence detection and identification of individual pollen grains
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/3/10.1063/1.4793792
1.
1. T. F. Eck, B. N. Holben, A. Sinyuk, R. T. Pinker, P. Goloub, H. Chen, B. Chatenet, Z. Li, R. P. Singh, S. N. Tripathi, J. S. Reid, D. M. Giles, O. Dubovik, N. T. O'Neill, A. Smirnov, P. Wang, and X. Xia, J. Geophys. Res., [Atmos.] 115, D19205, doi:10.1029/2010JD014002 (2010).
http://dx.doi.org/10.1029/2010JD014002
2.
2. P. Srikanth, S. Sudharsanam, and R. Steinberg, Indian J. Med. Microbiol. 26(4), 302312 (2008).
http://dx.doi.org/10.4103/0255-0857.43555
3.
3. S. C. Hill, R. G. Pinnick, G. Nachman, G. Cheng, R. K. Chang, M. W. Mayo, and G. L. Fernandez, Appl Opt. 34(30), 71497155 (1995).
http://dx.doi.org/10.1364/AO.34.007149
4.
4. S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather, Field Anal. Chem. Technol. 3(4–5), 221239 (1999).
http://dx.doi.org/10.1002/(SICI)1520-6521(1999)3:4/5<221::AID-FACT2>3.0.CO;2-7
5.
5. Y. L. Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, and J. P. Wolf, Rev. Sci. Instrum. 72(3), 18311836 (2001).
http://dx.doi.org/10.1063/1.1344179
6.
6. J. D. Eversole, D. Roselle, and M. E. Seaver, Air Monit. Detect Chem. Bio. Agents 3533, 3442 (1999).
http://dx.doi.org/10.1117/12.336868
7.
7. J. D. Eversole, W. K. Cary, C. S. Scotto, R. Pierson, M. Spence, and A. J. Campillo, Field Anal. Chem. Technol. 5(4), 205212 (2001).
http://dx.doi.org/10.1002/fact.1022
8.
8. V. Sivaprakasam, A. Luston, C. Scotto, and J. D. Eversole, Opt. Express 12(19), 44574466 (2004).
http://dx.doi.org/10.1364/OPEX.12.004457
9.
9. Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, Aerosol Sci. Technol. 37(8), 628639 (2003).
http://dx.doi.org/10.1080/02786820300904
10.
10. Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, J. Geophys. Res., [Atmos.] 112(D24), D24S19, doi: 10.1029/2007JD008741 (2007).
http://dx.doi.org/10.1029/2007JD008741
11.
11. Y. L. Pan, R. G. Pinnick, S. C. Hill, and R. K. Chang, Environ. Sci. Technol. 43(2), 429434 (2009).
http://dx.doi.org/10.1021/es801544y
12.
12. R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, Atmos. Environ. 38(11), 16571672 (2004).
http://dx.doi.org/10.1016/j.atmosenv.2003.11.017
13.
13. F. Taketani, Y. Kanaya, T. Nakamura, K. Koizumi, N. Moteki, and N. Takegawa, J. Aerosol Sci. 58, 18 (2013).
http://dx.doi.org/10.1016/j.jaerosci.2012.12.002
14.
14. H. C. Huang, Y. L. Pan, S. C. Hill, R. G. Pinnick, and R. K. Chang, Opt. Express 16(21), 1652316528 (2008).
http://dx.doi.org/10.1364/OE.16.016523
15.
15. Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, Opt. Express 18(12), 1243612457 (2010).
http://dx.doi.org/10.1364/OE.18.012436
16.
16. P. H. Kaye, E. Hirst, and Z. WangThomas, Appl Opt. 36(24), 61496156 (1997).
http://dx.doi.org/10.1364/AO.36.006149
17.
17. P. H. Kaye, J. E. Barton, E. Hirst, and J. M. Clark, Appl. Opt. 39(21), 37383745 (2000).
http://dx.doi.org/10.1364/AO.39.003738
18.
18. P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, Opt. Express 13(10), 35833593 (2005).
http://dx.doi.org/10.1364/OPEX.13.003583
19.
19. Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, Atmos. Environ. 45(8), 15551563 (2011).
http://dx.doi.org/10.1016/j.atmosenv.2010.12.042
20.
20. S. C. Hill, M. W. Mayo, and R. K. Chang, Army Research Laboratory (ARL-TR-4722), 2009.
21.
21. J. F. Richardson and J. H. Harker, Chemical Engineering (2007), Vol 2, p. 154.
22.
22. D. Kiselev, L. Bonacina, and J. P. Wolf, Opt. Express 19(24), 2451624521 (2011).
http://dx.doi.org/10.1364/OE.19.024516
23.
23. W. Zakowicz, Europhys. Lett. 85(4), 40001 (2009).
http://dx.doi.org/10.1209/0295-5075/85/40001
24.
24. D. A. Saucy, J. R. Anderson, and P. R. Buseck, J. Geophys. Res., [Atmos.] 96(D4), 74077414, doi:10.1029/90JD02235 (1991).
http://dx.doi.org/10.1029/90JD02235
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/3/10.1063/1.4793792
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Principal scheme of aerosol detector. (b) Experimental scheme : I1 – main air inlet; I2 – auxiliary air inlet; Y1, Y2 – laser diodes (655 nm, 780 nm); D1, D2 – photomultipliers (filtered for 655 nm and 780 nm); L1 – reflective objective; L2 – bi-convex lens; F1 – filter set for detection; F2 – filter set for excitation; G1 – diffraction grating; D3 – 32-anode photomultiplier; SSA – scatter analysis system; XFL – Xenon flash lamp; SAS – spectrum analysis system. (b) Aerosol detector and its power supply.

Image of FIG. 2.

Click to view

FIG. 2.

(a) CAD drawing of the nozzle. (b) CFD simulation of output flow of the nozzle (color scale represents absolute velocity field). (c) Flow diameter on the nozzle outlet measured by injection of water droplets.

Image of FIG. 3.

Click to view

FIG. 3.

CW laser focusing : La – CW laser; Ls – spherical lens; Ir – iris with clear aperture ; Lc – cylindrical lens; Wi – optical window: (a) side view; (b) top view; (c) laser spot without spherical lens Ls; (d) laser spot without spherical lens Ls; (e) laser spot with spherical lens Ls; (f) laser spot with spherical lens Ls.

Image of FIG. 4.

Click to view

FIG. 4.

Detection geometry for one scattering wavelength.

Image of FIG. 5.

Click to view

FIG. 5.

Filtering of the flash lamp (upper plot): blue – reference lamp spectrum; red – filtered lamp spectrum. Excitation and detection filter sets (insert plot): XFL – Xenon flash lamp; F1.1, F1.2, F1.4 – 266 nm mirrors; F1.3 – short pass filter; F1.5 – 250 nm interference filter; F1.6 – dichroic mirror (UV reflection); F2.1 – dichroic mirror (VIS transmission); F2.2 – low pass filter; L1 – reflective objective. Radiant sensitivity of 32-anode PMT convoluted with the transmission of detection filter set (lower plot).

Image of FIG. 6.

Click to view

FIG. 6.

(a) and (c) Scatter analysis system for 655 nm and 780 nm PMTs; (b) Spectrum acquisition system. Blocks: TI – transimpedance amplifier; B1, B2, B3 – buffers, AC – analogue to digital converter; L1, L2 – programmable logic; VR – voltage reference; CO – comparator; DC – digital to analogue converter; IN – 32-channel integrator scheme; DS – 32-channel analogue to digital conversion scheme. Analogue signals: PI – from scatter PMTs; AO – amplified output of scatter signal; SI – from 32-anode PMT; PP – gain regulation of scatter PMTs. Digital signals: DT – trigger from CO; BS – communication bus; UI – USB interface to host; EI – Ethernet interface to host.

Image of FIG. 7.

Click to view

FIG. 7.

CAD drawing of hardware components of detector: (a) nozzle block and chamber assembly; (b) measurement chamber. (c) Photograph of actual detector (left) and its power supply(right).

Image of FIG. 8.

Click to view

FIG. 8.

Real-time detection of Mulberry pollens: (a) scattered light from 655 nm CW laser; (b) fluorescence spectrum; (c) scattered light from 780 nm CW laser.

Image of FIG. 9.

Click to view

FIG. 9.

Mean values (at least 30 events) of scattering maxima for (green) and (red) lasers. Error bars reports interval with 50% of events within it.

Image of FIG. 10.

Click to view

FIG. 10.

Normalized time-resolved scattering traces for (a) microspheres and (b) Ragweed pollen.

Image of FIG. 11.

Click to view

FIG. 11.

Refraction angle simulation of a particle passage through a laser beam (particle diameter , beam diameter , particle velocity ): (a) double refraction angle as function of time, (b) Mie scattering profile, (c) particle passage through the beam. (d) Measured mean time-resolved scattering traces at .

Image of FIG. 12.

Click to view

FIG. 12.

Averaged fluorescence spectra (at least 30 events) for different pollens: (a) Mulberry; (b) Ragweed; (c) Pecan. Dashed lines show 96% confidence interval (±2σ).

Image of FIG. 13.

Click to view

FIG. 13.

First principal component (fluorescence raw data plus ratio between the scattering intensity maxima and the total photon counts in the fluorescence spectrum) versus scattering intensity maxima at .

Tables

Generic image for table

Click to view

Table I.

Pollen sizes and detection statistics.

Loading

Article metrics loading...

/content/aip/journal/rsi/84/3/10.1063/1.4793792
2013-03-05
2014-04-23

Abstract

We present a novel optical aerosol particle detector based on Xe flash lamp excitation and spectrally resolved fluorescence acquisition. We demonstrate its performances on three natural pollens acquiring in real-time scattering intensity at two wavelengths, sub-microsecond time-resolved scattering traces of the particles’ passage in the focus, and UV-excited fluorescence spectra. We show that the device gives access to a rather specific detection of the bioaerosol particles.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/3/1.4793792.html;jsessionid=10o5djllkbalo.x-aip-live-06?itemId=/content/aip/journal/rsi/84/3/10.1063/1.4793792&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A flash-lamp based device for fluorescence detection and identification of individual pollen grains
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/3/10.1063/1.4793792
10.1063/1.4793792
SEARCH_EXPAND_ITEM