1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/3/10.1063/1.4793793
1.
1. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Appl. Phys. Lett. 40, 178 (1982).
http://dx.doi.org/10.1063/1.92999
2.
2. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).
http://dx.doi.org/10.1103/PhysRevLett.49.57
3.
3. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 50, 120 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.120
4.
4. A. Richardella, P. Roushan, S. Mack, B. Zhou, D. A. Huse, D. D. Awschalom, and A. Yazdani, Science 327, 665 (2010).
http://dx.doi.org/10.1126/science.1183640
5.
5. K. J. Franke, G. Schulze, and J. I. Pascual, Science 332, 940 (2011).
http://dx.doi.org/10.1126/science.1202204
6.
6. S. Loth, S. Baumann, C. P. Lutz, D. M. Eigler, and A. J. Heinrich, Science 335, 196 (2012).
http://dx.doi.org/10.1126/science.1214131
7.
7. M. F. Crommie, C. P. Lutz, and D. M. Eigler, Nature (London) 363, 524 (1993).
http://dx.doi.org/10.1038/363524a0
8.
8. C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press, 1993).
9.
9. L. Diekhöner, M. A. Schneider, A. N. Baranov, V. S. Stepanyuk, P. Bruno, and K. Kern, Phys. Rev. Lett. 90, 236801 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.236801
10.
10. D. Vion, P. F. Orfila, P. Joyez, D. Esteve, and M. H. Devoret, J. Appl. Phys. 77, 2519 (1995).
http://dx.doi.org/10.1063/1.358781
11.
11. F. Delgado and J. Fernandez-Rossier, Phys. Rev. Lett. 107, 076804 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.076804
12.
12. R. Meservey, P. M. Tedrow, and P. Fulde, Phys. Rev. Lett. 25, 1270 (1970).
http://dx.doi.org/10.1103/PhysRevLett.25.1270
13.
13. P. M. Tedrow and R. Meservey, Phys. Rev. Lett. 26, 192 (1971).
http://dx.doi.org/10.1103/PhysRevLett.26.192
14.
14. P. Fulde, Adv. Phys. 22, 667 (1973).
http://dx.doi.org/10.1080/00018737300101369
15.
15. N. Moussy, H. Courtois, and B. Pannetier, Rev. Sci. Instrum. 72, 128 (2001).
http://dx.doi.org/10.1063/1.1331328
16.
16. H. Suderow, I. Guillamon, and S. Vieira, Rev. Sci. Instrum. 82, 033711 (2011).
http://dx.doi.org/10.1063/1.3567008
17.
17. M. Marz, G. Goll, and H. v. Löhneysen, Rev. Sci. Instrum. 81, 045102 (2010).
http://dx.doi.org/10.1063/1.3328059
18.
18. T. Matsui, H. Kambara, and H. Fukujama, J. Low Temp. Phys. 121, 803 (2000).
http://dx.doi.org/10.1023/A:1017533526472
19.
19. Y. J. Song, A. F. Otte, V. Shvarts, Z. Zhao, Y. Kuk, S. R. Blankenship, A. Band, F. M. Hess, and J. A. Stroscio, Rev. Sci. Instrum. 81, 121101 (2010).
http://dx.doi.org/10.1063/1.3520482
20.
20. M. Assig, “Development of a Millikelvin scanning tunneling microscope for applications in ultra high vacuum and high magnetic fields (No 5204),” Ph.D. dissertation, École Polytechnique Fédérale de Lausanne, 2011.
21.
21. C. R. Ast, M. Assig, A. Ast, and K. Kern, Rev. Sci. Instrum. 79, 093704 (2008).
http://dx.doi.org/10.1063/1.2979008
22.
22. attocube systems AG. ANPz50/LT/UHV z-positioner.
23.
23. H. London, in Proceedings of International Conference on Low Temperature Physics (International Union of Pure and Applied Physics, Oxford, UK, 1951), p. 157.
24.
24. H. London, G. R. Clarke, and E. Mendoza, Phys. Rev. 128, 1992 (1962).
http://dx.doi.org/10.1103/PhysRev.128.1992
25.
25. T. P. Das, R. de Bruyn Ouboter, and K. W. Taconis, in Proceedings of 9th International Conference on Low Temperature Physics (Plenum Press, 1965), p. 1253.
26.
26. O. V. Lounasmaa, Experimental Principles and Methods Below 1K (Academic Press Inc., 1974).
27.
27. F. Pobell, Matter and Methods at Low Temperatures, 3rd ed. (Springer, 2007).
28.
28. J. C. Wheatley, Am. J. Phys. 36, 181 (1968).
http://dx.doi.org/10.1119/1.1974483
29.
29. J. C. Wheatley, O. E. Vilches, and W. R. Abel, Phys. 4, 1 (1968).
30.
30. J. C. Wheatley, R. E. Rapp, and R. T. Johnson, J. Low Temp. Phys. 4, 1 (1971).
http://dx.doi.org/10.1007/BF00628435
31.
31. V. Shvarts, Z. Zhao, L. Bobb, and M. Jirmanus, J. Phys.: Conf. Ser. 150, 012046 (2009).
http://dx.doi.org/10.1088/1742-6596/150/1/012046
32.
32. P. R. N. Childs, J. R. Greenwood, and C. A. Long, Rev. Sci. Instrum. 71, 2959 (2000).
http://dx.doi.org/10.1063/1.1305516
33.
33. M. Watanabe, M. Morishita, and Y. Ootuka, Cryogenics 41, 143 (2001).
http://dx.doi.org/10.1016/S0011-2275(01)00066-2
34.
34. W. Schoepe, Physica B 165, 299 (1990).
http://dx.doi.org/10.1016/S0921-4526(90)80999-Y
35.
35. M. Affronte, M. Campani, S. Piccinini, M. Tamborin, B. Morten, M. Prudenziati, and O. Laborde, J. Low Temp. Phys. 109, 461 (1997).
http://dx.doi.org/10.1007/BF02396906
36.
36. G. E. Pike and C. H. Seager, J. Appl. Phys. 48, 5152 (1977).
http://dx.doi.org/10.1063/1.323595
37.
37. I. Batko, K. Flachbart, M. Somora, and D. Vanicky, Cryogenics 35, 105 (1995).
http://dx.doi.org/10.1016/0011-2275(95)92878-V
38.
38.The inductance is measured with an Agilent 4263B LCR meter. The excitation voltage is 100 mV at a lock-in frequency of 120 Hz.
39.
39. D. S. Greywall and P. A. Busch, Rev. Sci. Instrum. 60, 471 (1989).
http://dx.doi.org/10.1063/1.1140401
40.
40.The resistances are measured with the Lakeshore 370S resistance bridge. The excitation voltages range from 632 μV at the 1 K-pot to 20 μV at the mixing chamber. The lock-in frequency is 9.8 Hz.
41.
41. S. N. Mott, Conduction in Non-Crystalline Materials (Oxford University Press, 1993).
42.
42. A. L. Efros and B. I. Shklovskii, J. Phys. C 8, L49 (1975).
http://dx.doi.org/10.1088/0022-3719/8/4/003
43.
43. Spectrum control Inc. 51-726-017.
44.
44. Spectrum control Inc. 1289-004.
45.
45. W. P. Kirk and M. Twerdochlib, Rev. Sci. Instrum. 49, 765 (1978).
http://dx.doi.org/10.1063/1.1135609
46.
46. I. Guillamon, H. Suderow, S. Vieira, and P. Rodiere, Physica C 468, 537 (2008).
http://dx.doi.org/10.1016/j.physc.2007.11.066
47.
47. T. Kiss, T. Yokoya, A. Chainani, S. Shin, T. Hanaguri, M. Nohara, and H. Takagi, Nat. Phys. 3, 720 (2007).
http://dx.doi.org/10.1038/nphys699
48.
48. I. Guillamon, H. Suderow, S. Vieira, L. Cario, P. Diener, and P. Rodiere, Phys. Rev. Lett. 101, 166407 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.166407
49.
49. Y. Noat, T. Cren, F. Debontridder, D. Roditchev, W. Sacks, P. Toulemonde, and A. S. Miguel, Phys. Rev. B 82, 014531 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.014531
50.
50. K. Maki, Prog. Theor. Phys. 32, 29 (1964).
http://dx.doi.org/10.1143/PTP.32.29
51.
51. D. C. Worledge and T. H. Geballe, Phys. Rev. B 62, 447 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.447
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/3/10.1063/1.4793793
Loading
/content/aip/journal/rsi/84/3/10.1063/1.4793793
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/3/10.1063/1.4793793
2013-03-08
2015-01-30

Abstract

We present design and performance of a scanning tunneling microscope (STM) that operates at temperatures down to 10 mK providing ultimate energy resolution on the atomic scale. The STM is attached to a dilution refrigerator with direct access to an ultra high vacuum chamber allowing in situ sample preparation. High magnetic fields of up to 14 T perpendicular and up to 0.5 T parallel to the sample surface can be applied. Temperature sensors mounted directly at the tip and sample position verified the base temperature within a small error margin. Using a superconducting Al tip and a metallic Cu(111) sample, we determined an effective temperature of 38 ± 1 mK from the thermal broadening observed in the tunneling spectra. This results in an upper limit for the energy resolution of ΔE = 3.5k B T = 11.4 ± 0.3 μeV. The stability between tip and sample is 4 pm at a temperature of 15 mK as demonstrated by topography measurements on a Cu(111) surface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/3/1.4793793.html;jsessionid=41agsqtnwuloa.x-aip-live-06?itemId=/content/aip/journal/rsi/84/3/10.1063/1.4793793&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/3/10.1063/1.4793793
10.1063/1.4793793
SEARCH_EXPAND_ITEM