1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Note: Size effects on the tensile response of top-down fabricated Si nanobeams
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/3/10.1063/1.4794438
1.
1. R. He and P. Yang, Nat. Nanotechnol. 1, 4246 (2006).
http://dx.doi.org/10.1038/nnano.2006.53
2.
2. V. Passi, U. Bhaskar, T. Pardoen, U. Sodervall, B. Nilsson, G. Petersson, M. Hagberg, and J.-P. Raskin, J. Microelectromech. Syst. 21, 822 (2012).
http://dx.doi.org/10.1109/JMEMS.2012.2190711
3.
3. X. Li, T. Ono, Y. Wang, and M. Esashi, Appl. Phys. Lett. 83(15), 3081 (2003).
http://dx.doi.org/10.1063/1.1618369
4.
4. H. Sadeghian, C. K. Yang, J. F. L. Goosen, E. van der Drift, A. Bossche, P. J. French, and F. van Keulen, Appl. Phys. Lett. 94, 221903 (2009).
http://dx.doi.org/10.1063/1.3148774
5.
5. Y. Zhu, F. Xu, Q. Qin, W. Y. Fung, and W. Lu, Nano Lett. 9(11), 3934 (2009).
http://dx.doi.org/10.1021/nl902132w
6.
6. R. E. Miller and V. B. Shenoy, Nanotechnology 11, 139 (2000).
http://dx.doi.org/10.1088/0957-4484/11/3/301
7.
7. H. Sadeghian, H. Goosen, A. Bossche, B. Thijsse, and F. van Keulen, J. Phys. D 44(7), 072001 (2011).
http://dx.doi.org/10.1088/0022-3727/44/7/072001
8.
8. J. He and C. Lilley, Appl. Phys. Lett. 93, 263108 (2008).
http://dx.doi.org/10.1063/1.3050108
9.
9. S. Gravier, M. Coulombier, A. Safi, N. André, A. Boé, J.-P. Raskin, and T. Pardoen, J. Microelectromechan. Syst. 18, 555 (2009).
http://dx.doi.org/10.1109/JMEMS.2009.2020380
10.
10. S. Houri, U. Bhaskar, B. Gallacher, L. Francis, T. Pardoen, and J.-P. Raskin, Exp. Mech. 53, 441453 (2013).
http://dx.doi.org/10.1007/s11340-012-9654-9
11.
11. D. F. Wang, T. Ono, and M. Esashi, Appl. Phys. Lett. 83(15), 31893191 (2003).
http://dx.doi.org/10.1063/1.1616652
12.
12. S. H. Park, J. S. Kim, J. H. Park, J. S. Lee, Y. K. Choi, and O. M. Kwon, Thin Solid Films 492, 285 (2005).
http://dx.doi.org/10.1016/j.tsf.2005.06.056
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/3/10.1063/1.4794438
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

A schematic representation of (a) a test structure, (b) a series of test structures with corresponding data points on a stress-strain diagram, and (c) scanning electron microscope micrograph of a test structure showing the displacement of the cursors after release.

Image of FIG. 2.

Click to view

FIG. 2.

Stress-strain data and linear fit shown for 200 nm thick Si (circular markers) and 30 nm thick Si beams (triangular markers).

Image of FIG. 3.

Click to view

FIG. 3.

Effect of thickness on the tensile elastic properties of sc-Si as obtained from various stress-strain data (rectangular symbols), the tensile effective Young's modulus of ⟨110⟩ Si as theoretically predicted in Ref. 12 (solid line), effect of native oxide is shown (dashed line), values reported in literature are also shown for comparison (solid symbols for bottom-up Si and empty symbols for top-down Si).

Loading

Article metrics loading...

/content/aip/journal/rsi/84/3/10.1063/1.4794438
2013-03-06
2014-04-23

Abstract

The tensile response of top-down fabricated sc-Si nanobeams is inferred from the fitting of stress-strain data obtained under tensile loading conditions over a large range of deformation. The testing is performed using MEMS structures consisting of two connected beams; a highly stressed silicon-nitride (SiN) beam connected to a sc-Si specimen beam. The high tensile stress component present upon the deposition of the SiN loads the sc-Si beam once the entire structure is released. The strain and stress values are extracted independently, respectively, by scanning electron microscopy inspection and vibration frequency measurement of the released tensile MEMS structures. The tensile tests are undertaken for six thicknesses to determine the dependence of the elastic response on dimensions. The Young's modulus shows a variation of 40% for thicknesses ranging from 200 to 30 nm.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/3/1.4794438.html;jsessionid=ny46qusthr69.x-aip-live-03?itemId=/content/aip/journal/rsi/84/3/10.1063/1.4794438&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Note: Size effects on the tensile response of top-down fabricated Si nanobeams
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/3/10.1063/1.4794438
10.1063/1.4794438
SEARCH_EXPAND_ITEM