1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Design of a lens table for a double toroidal electron spectrometer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/3/10.1063/1.4794440
1.
1. C. Miron, M. Simon, N. Leclercq, and P. Morin, Rev. Sci. Instrum. 68, 3728 (1997).
http://dx.doi.org/10.1063/1.1148017
2.
2. K. Le Guen, D. Céolin, R. Guillemin, C. Miron, N. Leclercq, M. Bougeard, M. Simon, P. Morin, A. Mocellin, F. Burmeister, A. Naves de Brito, and S. L. Sorensen, Rev. Sci. Instrum. 73, 3885 (2002).
http://dx.doi.org/10.1063/1.1511799
3.
3. C. Miron and P. Morin, “High-resolution photoionization, photoelectron and coincidence spectroscopy,” Handbook of High-Resolution Spectroscopy (Wiley, 2011), pp. 16551689.
4.
4. O. Bjorneholm, G. Ohrwall, and M. Tchaplyguine, Nucl. Instrum. Methods Phys. Res. A 601, 161 (2009).
http://dx.doi.org/10.1016/j.nima.2008.12.222
5.
5. F. J. Himpsel, Adv. Phys. 32, 1 (1983).
http://dx.doi.org/10.1080/00018738300101521
6.
6. H. Siegbahn and L. Karlsson, in Hundbuch der Physik, edited by W. Mehlhorn (Springer, Berlin, 1982), Vol. 31.
7.
7. J. Eland, Photoelectron Spectroscopy: An Introduction to Ultraviolet Photoelectron Spectroscopy in the Gas Phase (Butterworths, 1984).
8.
8. Applications of Synchrotron Radiation, edited by W. Eberhardt (Springer-Verlag, Berlin, 1994).
9.
9. P. Baltzer, B. Wannberg, and M. C. Göthe, Rev. Sci. Instrum. 62, 643 (1991).
http://dx.doi.org/10.1063/1.1142518
10.
10. K. Siegbahn, Rev. Mod. Phys. 54, 709 (1982).
http://dx.doi.org/10.1103/RevModPhys.54.709
11.
11. K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Heden, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne, and Y. Baer, ESCA Applied to Free Molecules (North-Holland, Amsterdam/London, 1969).
12.
12. C. Miron, C. Nicolas, O. Travnikova, P. Morin, Y. Sun, F. Gel'mukhanov, N. Kosugi, and V. Kimberg, Nat. Phys. 8, 135 (2012).
http://dx.doi.org/10.1038/nphys2159
13.
13. P. Morin and I. Nenner, Phys. Rev. Lett. 56, 1913 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.1913
14.
14. M. Simon, C. Miron, N. Leclercq, P. Morin, K. Ueda, Y. Sato, S. Tanaka, and Y. Kayanuma, Phys. Rev. Lett. 79, 3857 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.3857
15.
15. K. Ueda, M. Simon, C. Miron, N. Leclercq, R. Guillemin, P. Morin, and S. Tanaka, Phys. Rev. Lett. 83, 3800 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.3800
16.
16. O. Björneholm, M. Bässler, A. Ausmees, I. Hjelte, R. Feifel, H. Wang, C. Miron, M. N. Piancastelli, S. Svensson, S. L. Sorensen, F. Gel'mukhanov, and H. Ågren, Phys. Rev. Lett. 84, 2826 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2826
17.
17. K. Ueda, M. Kitajima, A. De Fanis, T. Furuta, H. Shindo, H. Tanaka, K. Okada, R. Feifel, S. L. Sorensen, H. Yoshida, and Y. Senba, Phys. Rev. Lett. 90, 233006 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.233006
18.
18. O. Travnikova, J.-C. Liu, A. Lindblad, C. Nicolas, J. Söderström, V. Kimberg, F. Gel'mukhanov, and C. Miron, Phys. Rev. Lett. 105, 233001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.233001
19.
19. J. Cooper and R. N. Zare, J. Chem. Phys. 48, 942 (1968).
http://dx.doi.org/10.1063/1.1668742
20.
20. U. Becker, J. Electron Spectrosc. Relat. Phenom. 112, 47 (2000).
http://dx.doi.org/10.1016/S0368-2048(00)00202-4
21.
21. E. Shigemasa, J. Adachi, M. Oura, and A. Yagishita, Phys. Rev. Lett. 74, 359 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.359
22.
22. R. Dörner, H. Bräuning, J. M. Feagin, V. Mergel, O. Jagutzki, L. Spielberger, T. Vogt, H. Khemliche, M. H. Prior, J. Ullrich, C. L. Cocke, and H. Schmidt-Böcking, Phys. Rev. A 57, 1074 (1998).
http://dx.doi.org/10.1103/PhysRevA.57.1074
23.
23. P. Morin, M. Simon, C. Miron, N. Leclercq, and D. Hansen, J. Electron Spectrosc. Relat. Phenom. 93, 49 (1998).
http://dx.doi.org/10.1016/S0368-2048(98)00157-1
24.
24. D. Céolin, C. Miron, M. Simon, and P. Morin, J. Electron Spectrosc. Relat. Phenom. 141, 171 (2004).
http://dx.doi.org/10.1016/j.elspec.2004.06.014
25.
25. X. J. Liu, G. Prümper, E. Kukk, R. Sankari, M. Hoshino, C. Makochekanwa, M. Kitajima, H. Tanaka, H. Yoshida, Y. Tamenori, and K. Ueda, Phys. Rev. A 72, 042704 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.042704
26.
26. G. Prümper, V. Carravetta, Y. Muramatsu, Y. Tamenori, M. Kitajima, H. Tanaka, C. Makochekanwa, M. Hoshino, X. J. Liu, and K. Ueda, Phys. Rev. A 76, 052705 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.052705
27.
27. C. Miron and P. Morin, Nucl. Instrum. Methods Phys. Res. A 601, 66 (2009).
http://dx.doi.org/10.1016/j.nima.2008.12.104
28.
28. R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, and H. Schmidt-Böcking, Phys. Rep. 330, 95 (2000).
http://dx.doi.org/10.1016/S0370-1573(99)00109-X
29.
29. P. Kruit and F. Read, J. Phys. E 16, 313 (1983).
http://dx.doi.org/10.1088/0022-3735/16/4/016
30.
30. J. H. D. Eland, O. Vieuxmaire, T. Kinugawa, P. Lablanquie, R. I. Hall, and F. Penent, Phys. Rev. Lett. 90, 053003 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.053003
31.
31. A. Vollmer, R. Ovsyannikov, M. Gorgoi, S. Krause, M. Oehzelt, A. Lindblad, N. Mårtensson, S. Svensson, P. Karlsson, M. Lundvuist, T. Schmeiler, J. Pflaum, and N. Koch, J. Electron. Spectrosc. Relat. Phenom. 185, 55 (2012).
http://dx.doi.org/10.1016/j.elspec.2012.01.003
32.
32. E. Harting and F. H. Read, Electrostatic Lenses (Elsevier, Amsterdam, 1976).
33.
33. J. Moore, C. Davis, and M. Coplan, Building Scientific Apparatus, 3rd ed. (Cambridge University, MA, 2003).
34.
34.See http://www.vgscienta.com for VG Scienta AB.
35.
35.See http://www.omicron.de for Omicron NanoTechnology GmbH.
36.
36. N. Mårtensson, P. Baltzer, P. A. Brühwiler, J.-O. Forsell, A. Nilsson, A. Stenborg, and B. Wannberg, J. Electron Spectrosc. Relat. Phenom. 70, 117 (1994).
http://dx.doi.org/10.1016/0368-2048(94)02224-N
37.
37. L. Ferrand-Tanaka, M. Simon, R. Thissen, M. Lavollée, and P. Morin, Rev. Sci. Instrum. 67, 358 (1996).
http://dx.doi.org/10.1063/1.1146595
38.
38. G. Prümper and K. Ueda, Nucl. Instrum. Methods Phys. Res. A 574, 350 (2007).
http://dx.doi.org/10.1016/j.nima.2007.02.071
39.
39. J. Lower, R. Panajotovic, S. Bellm, and E. Weigold, Rev. Sci. Instrum. 78, 111301 (2007).
http://dx.doi.org/10.1063/1.2813014
40.
40. D. Céolin, G. Chaplier, M. Lemonnier, G. A. Garcia, C. Miron, L. Nahon, M. Simon, N. Leclercq, and P. Morin, Rev. Sci. Instrum. 76, 043302 (2005).
http://dx.doi.org/10.1063/1.1891372
41.
41. T. J. Reddish, G. Richmond, G. W. Bagley, J. P. Wightman, and S. Cvejanovic, Rev. Sci. Instrum. 68, 2685 (1997).
http://dx.doi.org/10.1063/1.1148180
42.
42. M. Siggel-King, R. Lindsay, F. Quinn, J. Pearson, G. Fraser, and G. Thornton, J. Electron Spectrosc. Relat. Phenom. 137, 721 (2004).
http://dx.doi.org/10.1016/j.elspec.2004.02.010
43.
43. T. Kaneyasu, Y. Hikosaka, and E. Shigemasa, J. Electron Spectrosc. Relat. Phenom. 156, 279 (2007).
http://dx.doi.org/10.1016/j.elspec.2006.12.014
44.
44. D. J. Manura and D. A. Dahl, SIMION(TM) 8.0, 2003.
45.
45. O. Jagutzki, V. Mergel, K. Ullmann-Pfleger, L. Spielberger, U. Spillmann, R. Dörner, and H. Schmidt-Böcking, Nucl. Instrum. Methods Phys. Res. A 477, 244 (2002).
http://dx.doi.org/10.1016/S0168-9002(01)01839-3
46.
46.See http://www.Roentdek.com for RoentDek Handels GmbH.
47.
47.See http://simion.com/issue/304 for Scientific Instrument Services Inc.
48.
48. D. W. O. Heddle, Electrostatic Lens Systems, 2nd ed. (Institute of Physics, University of Reading, Berkshire, 2000).
49.
49. J. A. Nelder and R. Mead, Comput. J. 7, 308 (1965).
http://dx.doi.org/10.1093/comjnl/7.4.308
51.
51. J. Söderström, A. Lindblad, A. N. Grum-Grzhimailo, O. Travnikova, C. Nicolas, S. Svensson, and C. Miron, New J. Phys. 13, 073014 (2011).
http://dx.doi.org/10.1088/1367-2630/13/7/073014
52.
52. A. Lindblad, V. Kimberg, J. Söderström, C. Nicolas, O. Travnikova, N. Kosugi, F. Gel'mukhanov, and C. Miron, New J. Phys. 14, 113018 (2012).
http://dx.doi.org/10.1088/1367-2630/14/11/113018
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/3/10.1063/1.4794440
Loading
/content/aip/journal/rsi/84/3/10.1063/1.4794440
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/3/10.1063/1.4794440
2013-03-13
2014-09-18

Abstract

We report here on the method we developed to build a lens table for a four-element electrostatic transfer lens operated together with a double toroidal electron energy analyzer designed by one of us, and whose original design and further improvements are described in detail in Miron et al. [Rev. Sci. Instrum.68, 3728 (Year: 1997)10.1063/1.1148017] and Le Guen et al. [Rev. Sci. Instrum.73, 3885 (Year: 2002)10.1063/1.1511799]. Both computer simulations and laboratory instrument tuning were performed in order to build this lens table. The obtained result was tested for a broad range of electron kinetic energies and analyzer pass energies. Based on this new lens table, allowing to easily computer control the spectrometer working conditions, we could routinely achieve an electron energy resolution ranging between 0.6% and 0.8% of the analyzer pass energy, while the electron count rate was also significantly improved. The establishment of such a lens table is of high importance to relieve experimentalists from the tedious laboring of the lens optimization, which was previously necessary prior to any measurement. The described method can be adapted to any type of electron/ion energy analyzer, and will thus be interesting for all experimentalists who own, or plan to build or improve their charged particle energy analyzers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/3/1.4794440.html;jsessionid=3b0b16r0qp1wk.x-aip-live-02?itemId=/content/aip/journal/rsi/84/3/10.1063/1.4794440&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Design of a lens table for a double toroidal electron spectrometer
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/3/10.1063/1.4794440
10.1063/1.4794440
SEARCH_EXPAND_ITEM