Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. Miron, M. Simon, N. Leclercq, and P. Morin, Rev. Sci. Instrum. 68, 3728 (1997).
2. K. Le Guen, D. Céolin, R. Guillemin, C. Miron, N. Leclercq, M. Bougeard, M. Simon, P. Morin, A. Mocellin, F. Burmeister, A. Naves de Brito, and S. L. Sorensen, Rev. Sci. Instrum. 73, 3885 (2002).
3. C. Miron and P. Morin, “High-resolution photoionization, photoelectron and coincidence spectroscopy,” Handbook of High-Resolution Spectroscopy (Wiley, 2011), pp. 16551689.
4. O. Bjorneholm, G. Ohrwall, and M. Tchaplyguine, Nucl. Instrum. Methods Phys. Res. A 601, 161 (2009).
5. F. J. Himpsel, Adv. Phys. 32, 1 (1983).
6. H. Siegbahn and L. Karlsson, in Hundbuch der Physik, edited by W. Mehlhorn (Springer, Berlin, 1982), Vol. 31.
7. J. Eland, Photoelectron Spectroscopy: An Introduction to Ultraviolet Photoelectron Spectroscopy in the Gas Phase (Butterworths, 1984).
8. Applications of Synchrotron Radiation, edited by W. Eberhardt (Springer-Verlag, Berlin, 1994).
9. P. Baltzer, B. Wannberg, and M. C. Göthe, Rev. Sci. Instrum. 62, 643 (1991).
10. K. Siegbahn, Rev. Mod. Phys. 54, 709 (1982).
11. K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Heden, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne, and Y. Baer, ESCA Applied to Free Molecules (North-Holland, Amsterdam/London, 1969).
12. C. Miron, C. Nicolas, O. Travnikova, P. Morin, Y. Sun, F. Gel'mukhanov, N. Kosugi, and V. Kimberg, Nat. Phys. 8, 135 (2012).
13. P. Morin and I. Nenner, Phys. Rev. Lett. 56, 1913 (1986).
14. M. Simon, C. Miron, N. Leclercq, P. Morin, K. Ueda, Y. Sato, S. Tanaka, and Y. Kayanuma, Phys. Rev. Lett. 79, 3857 (1997).
15. K. Ueda, M. Simon, C. Miron, N. Leclercq, R. Guillemin, P. Morin, and S. Tanaka, Phys. Rev. Lett. 83, 3800 (1999).
16. O. Björneholm, M. Bässler, A. Ausmees, I. Hjelte, R. Feifel, H. Wang, C. Miron, M. N. Piancastelli, S. Svensson, S. L. Sorensen, F. Gel'mukhanov, and H. Ågren, Phys. Rev. Lett. 84, 2826 (2000).
17. K. Ueda, M. Kitajima, A. De Fanis, T. Furuta, H. Shindo, H. Tanaka, K. Okada, R. Feifel, S. L. Sorensen, H. Yoshida, and Y. Senba, Phys. Rev. Lett. 90, 233006 (2003).
18. O. Travnikova, J.-C. Liu, A. Lindblad, C. Nicolas, J. Söderström, V. Kimberg, F. Gel'mukhanov, and C. Miron, Phys. Rev. Lett. 105, 233001 (2010).
19. J. Cooper and R. N. Zare, J. Chem. Phys. 48, 942 (1968).
20. U. Becker, J. Electron Spectrosc. Relat. Phenom. 112, 47 (2000).
21. E. Shigemasa, J. Adachi, M. Oura, and A. Yagishita, Phys. Rev. Lett. 74, 359 (1995).
22. R. Dörner, H. Bräuning, J. M. Feagin, V. Mergel, O. Jagutzki, L. Spielberger, T. Vogt, H. Khemliche, M. H. Prior, J. Ullrich, C. L. Cocke, and H. Schmidt-Böcking, Phys. Rev. A 57, 1074 (1998).
23. P. Morin, M. Simon, C. Miron, N. Leclercq, and D. Hansen, J. Electron Spectrosc. Relat. Phenom. 93, 49 (1998).
24. D. Céolin, C. Miron, M. Simon, and P. Morin, J. Electron Spectrosc. Relat. Phenom. 141, 171 (2004).
25. X. J. Liu, G. Prümper, E. Kukk, R. Sankari, M. Hoshino, C. Makochekanwa, M. Kitajima, H. Tanaka, H. Yoshida, Y. Tamenori, and K. Ueda, Phys. Rev. A 72, 042704 (2005).
26. G. Prümper, V. Carravetta, Y. Muramatsu, Y. Tamenori, M. Kitajima, H. Tanaka, C. Makochekanwa, M. Hoshino, X. J. Liu, and K. Ueda, Phys. Rev. A 76, 052705 (2007).
27. C. Miron and P. Morin, Nucl. Instrum. Methods Phys. Res. A 601, 66 (2009).
28. R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, and H. Schmidt-Böcking, Phys. Rep. 330, 95 (2000).
29. P. Kruit and F. Read, J. Phys. E 16, 313 (1983).
30. J. H. D. Eland, O. Vieuxmaire, T. Kinugawa, P. Lablanquie, R. I. Hall, and F. Penent, Phys. Rev. Lett. 90, 053003 (2003).
31. A. Vollmer, R. Ovsyannikov, M. Gorgoi, S. Krause, M. Oehzelt, A. Lindblad, N. Mårtensson, S. Svensson, P. Karlsson, M. Lundvuist, T. Schmeiler, J. Pflaum, and N. Koch, J. Electron. Spectrosc. Relat. Phenom. 185, 55 (2012).
32. E. Harting and F. H. Read, Electrostatic Lenses (Elsevier, Amsterdam, 1976).
33. J. Moore, C. Davis, and M. Coplan, Building Scientific Apparatus, 3rd ed. (Cambridge University, MA, 2003).
34.See for VG Scienta AB.
35.See for Omicron NanoTechnology GmbH.
36. N. Mårtensson, P. Baltzer, P. A. Brühwiler, J.-O. Forsell, A. Nilsson, A. Stenborg, and B. Wannberg, J. Electron Spectrosc. Relat. Phenom. 70, 117 (1994).
37. L. Ferrand-Tanaka, M. Simon, R. Thissen, M. Lavollée, and P. Morin, Rev. Sci. Instrum. 67, 358 (1996).
38. G. Prümper and K. Ueda, Nucl. Instrum. Methods Phys. Res. A 574, 350 (2007).
39. J. Lower, R. Panajotovic, S. Bellm, and E. Weigold, Rev. Sci. Instrum. 78, 111301 (2007).
40. D. Céolin, G. Chaplier, M. Lemonnier, G. A. Garcia, C. Miron, L. Nahon, M. Simon, N. Leclercq, and P. Morin, Rev. Sci. Instrum. 76, 043302 (2005).
41. T. J. Reddish, G. Richmond, G. W. Bagley, J. P. Wightman, and S. Cvejanovic, Rev. Sci. Instrum. 68, 2685 (1997).
42. M. Siggel-King, R. Lindsay, F. Quinn, J. Pearson, G. Fraser, and G. Thornton, J. Electron Spectrosc. Relat. Phenom. 137, 721 (2004).
43. T. Kaneyasu, Y. Hikosaka, and E. Shigemasa, J. Electron Spectrosc. Relat. Phenom. 156, 279 (2007).
44. D. J. Manura and D. A. Dahl, SIMION(TM) 8.0, 2003.
45. O. Jagutzki, V. Mergel, K. Ullmann-Pfleger, L. Spielberger, U. Spillmann, R. Dörner, and H. Schmidt-Böcking, Nucl. Instrum. Methods Phys. Res. A 477, 244 (2002).
46.See for RoentDek Handels GmbH.
47.See for Scientific Instrument Services Inc.
48. D. W. O. Heddle, Electrostatic Lens Systems, 2nd ed. (Institute of Physics, University of Reading, Berkshire, 2000).
49. J. A. Nelder and R. Mead, Comput. J. 7, 308 (1965).
51. J. Söderström, A. Lindblad, A. N. Grum-Grzhimailo, O. Travnikova, C. Nicolas, S. Svensson, and C. Miron, New J. Phys. 13, 073014 (2011).
52. A. Lindblad, V. Kimberg, J. Söderström, C. Nicolas, O. Travnikova, N. Kosugi, F. Gel'mukhanov, and C. Miron, New J. Phys. 14, 113018 (2012).

Data & Media loading...


Article metrics loading...



We report here on the method we developed to build a lens table for a four-element electrostatic transfer lens operated together with a double toroidal electron energy analyzer designed by one of us, and whose original design and further improvements are described in detail in Miron et al. [Rev. Sci. Instrum.68, 3728 (Year: 1997)10.1063/1.1148017] and Le Guen et al. [Rev. Sci. Instrum.73, 3885 (Year: 2002)10.1063/1.1511799]. Both computer simulations and laboratory instrument tuning were performed in order to build this lens table. The obtained result was tested for a broad range of electron kinetic energies and analyzer pass energies. Based on this new lens table, allowing to easily computer control the spectrometer working conditions, we could routinely achieve an electron energy resolution ranging between 0.6% and 0.8% of the analyzer pass energy, while the electron count rate was also significantly improved. The establishment of such a lens table is of high importance to relieve experimentalists from the tedious laboring of the lens optimization, which was previously necessary prior to any measurement. The described method can be adapted to any type of electron/ion energy analyzer, and will thus be interesting for all experimentalists who own, or plan to build or improve their charged particle energy analyzers.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd