1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/4/10.1063/1.4795829
1.
1. D. S. Gianola and C. Eberl, JOM 61(3), 2435 (2009).
http://dx.doi.org/10.1007/s11837-009-0037-3
2.
2. D. Kiener, C. Motz, G. Dehm, and R. Pippan, Int. J. Mater. Res. 100(8), 10741087 (2009).
http://dx.doi.org/10.3139/146.110149
3.
3. M. Legros, D. S. Gianola, and C. Motz, MRS Bull. 35(5), 354360 (2010).
http://dx.doi.org/10.1557/mrs2010.567
4.
4. S. Syed Asif, K. Wahl, R. Colton, and O. Warren, J. Appl. Phys. 90(3), 11921200 (2001).
http://dx.doi.org/10.1063/1.1380218
5.
5. C. A. Schuh, C. E. Packard, and A. C. Lund, J. Mater. Res. 21(3), 725736 (2006).
http://dx.doi.org/10.1557/jmr.2006.0080
6.
6. C. Niederberger, W. M. Mook, X. Maeder, and J. Michler, Mater. Sci. Eng., A 527(16–17), 43064311 (2010).
http://dx.doi.org/10.1016/j.msea.2010.03.055
7.
7. X. Maeder, W. M. Mook, C. Niederberger, and J. Michler, Philos. Mag. 91(7–9), 10971107 (2011).
http://dx.doi.org/10.1080/14786435.2010.505178
8.
8. R. Ghisleni, J. Liu, R. Raghavan, P. Brodard, A. Lugstein, K. Wasmer, and J. Michler, Philos. Mag. 91(7–9), 12861292 (2010).
http://dx.doi.org/10.1080/14786435.2010.495358
9.
9. S. Ruffell, J. Bradby, J. Williams, and O. Warren, J. Mater. Res. 22(03), 578586 (2007).
http://dx.doi.org/10.1557/jmr.2007.0100
10.
10. L. Fang, C. L. Muhlstein, J. G. Collins, A. L. Romasco, and L. H. Friedman, J. Mater. Res. 23(09), 24802485 (2008).
http://dx.doi.org/10.1557/jmr.2008.0298
11.
11. H. H. Nguyen, P. J. Wei, and J. F. Lin, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2(1), 015007 (2011).
http://dx.doi.org/10.1088/2043-6262/2/1/015007
12.
12. M. Smolka, C. Motz, T. Detzel, W. Robl, T. Griesser, A. Wimmer, and G. Dehm, Rev. Sci. Instrum. 83(6), 064702 (2012).
http://dx.doi.org/10.1063/1.4725529
13.
13. Z. Duan and A. Hodge, JOM 61(12), 3236 (2009).
http://dx.doi.org/10.1007/s11837-009-0177-5
14.
14. J. C. Trenkle, C. E. Packard, and C. A. Schuh, Rev. Sci. Instrum. 81(7), 073901 (2010).
http://dx.doi.org/10.1063/1.3436633
15.
15. N. M. Everitt, M. I. Davies, and J. F. Smith, Philos. Mag. 91(7–9), 12211244 (2011).
http://dx.doi.org/10.1080/14786435.2010.496745
16.
16. K. V. Rajulapati, M. M. Biener, J. Biener, and A. M. Hodge, Philos. Mag. Lett. 90(1), 3542 (2009).
http://dx.doi.org/10.1080/09500830903356893
17.
17. J. M. Wheeler, R. Raghavan, and J. Michler, Mater. Sci. Eng., A 528(29–30), 87508756 (2011).
http://dx.doi.org/10.1016/j.msea.2011.08.057
18.
18. S. Korte, R. J. Stearn, J. M. Wheeler, and W. J. Clegg, J. Mater. Res. 27(1), 167176 (2011).
http://dx.doi.org/10.1557/jmr.2011.268
19.
19. J. F. Smith and S. Zheng, Surf. Eng. 16(2), 143146 (2000).
http://dx.doi.org/10.1179/026708400101517044
20.
20. B. D. Beake and J. F. Smith, Philos. Mag. A 82(10 SPEC.), 21792186 (2002).
http://dx.doi.org/10.1080/01418610208235727
21.
21. B. Beake, S. Goodes, and J. Smith, Z. Metallkd. 94(7), 17 (2003).
22.
22. J. Xia, C. X. Li, and H. Dong, Mater. Sci. Eng., A 354, 112120 (2003).
http://dx.doi.org/10.1016/S0921-5093(02)00902-4
23.
23. G. Fox-Rabinovich, B. Beake, J. Endrino, S. Veldhuis, R. Parkinson, L. Shuster, and M. Migranov, Surf. Coat. Technol. 200, 57385742 (2006).
http://dx.doi.org/10.1016/j.surfcoat.2005.08.132
24.
24. B. Beake, J. Smith, A. Gray, G. Fox-Rabinovich, S. Veldhuis, and J. Endrino, Surf. Coat. Technol. 201, 45854593 (2007).
http://dx.doi.org/10.1016/j.surfcoat.2006.09.118
25.
25. A. Gray and B. D. Beake, J. Nanosci. Nanotechnol. 7(7), 25302533 (2007).
http://dx.doi.org/10.1166/jnn.2007.440
26.
26. A. J. Muir Wood and T. W. Clyne, Acta Mater. 54(20), 56075615 (2006).
http://dx.doi.org/10.1016/j.actamat.2006.08.013
27.
27. A. J. Muir Wood, S. Sanjabi, Y. Q. Fu, Z. H. Barber, and T. W. Clyne, Surf. Coat. Technol. 202, 31153120 (2008).
http://dx.doi.org/10.1016/j.surfcoat.2007.11.011
28.
28. S. Korte and W. J. Clegg, Scr. Mater. 60(9), 807810 (2009).
http://dx.doi.org/10.1016/j.scriptamat.2009.01.029
29.
29. S. Korte, J. S. Barnard, R. J. Stearn, and W. J. Clegg, Int. J. Plast. 27(11), 18531866 (2011).
http://dx.doi.org/10.1016/j.ijplas.2011.05.009
30.
30. J. M. Wheeler, C. Niederberger, C. Tessarek, S. Christiansen, and J. Michler, Int. J. Plast. 40, 140151 (2013).
http://dx.doi.org/10.1016/j.ijplas.2012.08.001
31.
31. J. M. Wheeler, R. Raghavan, and J. Michler, Scr. Mater. 67(0), 125128 (2012).
http://dx.doi.org/10.1016/j.scriptamat.2012.03.039
32.
32. J. M. Wheeler, P. Brodard, and J. Michler, Philos. Mag. 92(25–27), 31283141 (2012).
http://dx.doi.org/10.1080/14786435.2012.674647
33.
33. J. Pfetzing-Micklich, R. Ghisleni, T. Simon, C. Somsen, J. Michler, and G. Eggeler, Mater. Sci. Eng., A 538, 265271 (2012).
http://dx.doi.org/10.1016/j.msea.2012.01.042
34.
34. J. M. Wheeler, R. A. Oliver, and T. W. Clyne, Diamond Relat. Mater. 19(11), 13481353 (2010).
http://dx.doi.org/10.1016/j.diamond.2010.07.004
35.
35. R. Rabe, J. M. Breguet, P. Schwaller, S. Stauss, F. J. Haug, J. Patscheider, and J. Michler, Thin Solid Films 469–470, 206213 (2004).
http://dx.doi.org/10.1016/j.tsf.2004.08.096
36.
36. R. Ghisleni, K. Rzepiejewska-Malyska, L. Philippe, P. Schwaller, and J. Michler, Microsc. Res. Tech. 72(3), 242249 (2009).
http://dx.doi.org/10.1002/jemt.20677
37.
37. J. W. Draper, London, Edinburgh Dublin Philos. Mag. J. Sci. 30, 345359 (1847).
38.
38. F. Giuliani, Ph.D. dissertation, University of Cambridge, 2005.
39.
39. J. Holman, Heat Transfer, 7th ed. (McGraw-Hill, London, 1992).
40.
40. CRC, Handbook of Chemistry and Physics, 57th ed. (CRC Press, Cleveland, 1976).
41.
41. F. Aguado and V. G. Baonza, Phys. Rev. B 73(2), 024111 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.024111
42.
42. S. R. Murthy, J. Mater. Sci. Lett. 4(5), 603605 (1985).
http://dx.doi.org/10.1007/BF00720044
43.
43. Z. Li and R. C. Bradt, Int. J. High Technol. Ceram. 4(1), 110 (1988).
http://dx.doi.org/10.1016/0267-3762(88)90060-4
44.
44. T. Goto, O. L. Anderson, I. Ohno, and S. Yamamoto, J. Geophys. Res. 94(B6), 75887602, doi:10.1029/JB094iB06p07588 (1989).
http://dx.doi.org/10.1029/JB094iB06p07588
45.
45. J. B. Wachtman, Jr., W. E. Tefft, D. G. Lam, Jr., and C. S. Apstein, Phys. Rev. 122(6), 17541759 (1961).
http://dx.doi.org/10.1103/PhysRev.122.1754
46.
46. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7(6), 15641583 (1992).
http://dx.doi.org/10.1557/JMR.1992.1564
47.
47. R. G. Munro, NISTIR 6853 (NIST, Gaithersburg, MD, 2002).
48.
48. M. D. Uchic, D. M. Dimiduk, J. N. Florando, and W. D. Nix, Science 305(5686), 986989 (2004).
http://dx.doi.org/10.1126/science.1098993
49.
49. N. Ono, K. Kitamura, K. Nakajima, and Y. Shimanuki, Jpn. J. Appl. Phys. 39, 368371 (2000).
http://dx.doi.org/10.1143/JJAP.39.368
50.
50. C.-H. Cho, Curr. Appl. Phys. 9(2), 538545 (2009).
http://dx.doi.org/10.1016/j.cap.2008.03.024
51.
51. L. J. Vandeperre, F. Giuliani, S. J. Lloyd, and W. J. Clegg, Acta Mater. 55(18), 63076315 (2007).
http://dx.doi.org/10.1016/j.actamat.2007.07.036
52.
52. I.-S. Choi, Y. Gan, D. Kaufmann, O. Kraft, and R. Schwaiger, J. Mater. Res. 27, 27522759 (2012).
http://dx.doi.org/10.1557/jmr.2012.18
53.
53. I. N. Sneddon, Proc. Cambridge Philos. Soc. 42, 2939 (1946).
http://dx.doi.org/10.1017/S0305004100022702
54.
54. H. Zhang, B. E. Schuster, Q. Wei, and K. T. Ramesh, Scr. Mater. 54(2), 181186 (2006).
http://dx.doi.org/10.1016/j.scriptamat.2005.06.043
55.
55. L. Barbieri, E. Wagner, and P. Hoffmann, Langmuir 23(4), 17231734 (2007).
http://dx.doi.org/10.1021/la0617964
56.
56. B. Moser, K. Wasmer, L. Barbieri, and J. Michler, J. Mater. Res. 22(4), 10041011 (2007).
http://dx.doi.org/10.1557/jmr.2007.0140
57.
57. F. Östlund, K. Rzepiejewska-Malyska, K. Leifer, L. M. Hale, Y. Tang, R. Ballarini, W. W. Gerberich, and J. Michler, Adv. Funct. Mater. 19(15), 24392444 (2009).
http://dx.doi.org/10.1002/adfm.200900418
58.
58. F. Ostlund, P. Howie, R. Ghisleni, S. Korte, K. Leifer, W. Clegg, and J. Michler, Philos. Mag. 91(7–9), 11901199 (2011).
http://dx.doi.org/10.1080/14786435.2010.509286
59.
59. P. R. Howie, S. Korte, and W. J. Clegg, J. Mater. Res. 27(01), 141151 (2012).
http://dx.doi.org/10.1557/jmr.2011.256
60.
60. J. Rabier, P. O. Renault, D. Eyidi, J. L. Demenet, J. Chen, H. Couvy, and L. Wang, Phys. Status Solidi C 4(8), 31103114 (2007).
http://dx.doi.org/10.1002/pssc.200675480
61.
61. S. Nakao, T. Ando, M. Shikida, and K. Sato, J. Micromech. Microeng. 16(4), 715720 (2006).
http://dx.doi.org/10.1088/0960-1317/16/4/007
62.
62. J. Castaing, P. Veyssiere, L. P. Kubin, and J. Rabier, Philos. Mag. A 44(6), 14071413 (1981).
http://dx.doi.org/10.1080/01418618108235821
63.
63. J. L. Demenet, Ph.D. dissertation, University of Poitiers, France, 1987.
64.
64. J. L. Demenet, J. C. Desoyer, J. Rabier, and P. Veyssiere, Scr. Metall. 18(1), 4145 (1984).
http://dx.doi.org/10.1016/0036-9748(84)90086-3
65.
65. S. Shim, H. Bei, M. K. Miller, G. M. Pharr, and E. P. George, Acta Mater. 57(2), 503510 (2009).
http://dx.doi.org/10.1016/j.actamat.2008.09.033
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/4/10.1063/1.4795829
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Alemnis In Situ Indenter with modifications for elevated temperature operation.

Image of FIG. 2.

Click to view

FIG. 2.

Secondary electron imaging using (a) a Cube Corner indenter at an observation angle of 21.2° and (b) a Berkovich indenter at an observation angle of 10.6°.

Image of FIG. 3.

Click to view

FIG. 3.

Load and displacement sensor drift during and after heating and cooling to various temperatures with the indenter temperature shown with smaller line thickness.

Image of FIG. 4.

Click to view

FIG. 4.

Temperature within the nanomechanical testing system with (a) a top view schematic diagram of the temperature in the system with the sample heater at 500 °C and the indenter apex temperature matched with the surface temperature with the locations of thermocouples denoted by yellow and green dashed lines, (b) the measured temperature gradient from the thermocouples as a function of the sample heater temperature, and (c) a close-up side view of the temperatures near the contact as oriented in the SEM at an observation angle of 21.2°.

Image of FIG. 5.

Click to view

FIG. 5.

The effects of temperature mismatch on (a) indenter and surface/sample temperature during contact and (b) general effects of contact variables on thermal drift.

Image of FIG. 6.

Click to view

FIG. 6.

Load-displacement curves (a) obtained in pseudo load-controlled indentations on a tantalum sample heated to a nominal temperature of 200 °C using a thermally calibrated, 9 μm diameter diamond flat punch with the indenter at various temperatures, (b) displacement and indenter temperature measurements as a function of time, and (c) in situ SE micrograph of the contact.

Image of FIG. 7.

Click to view

FIG. 7.

Illustrative effect of PID regulation of the indenter temperature on (a) load-displacement curves and (b) the measured temperature and displacement with time.

Image of FIG. 8.

Click to view

FIG. 8.

Temperature calibration curves for the indenters used in this study and the cube corner indenter first calibrated by both thermocouple indentation and Raman spectroscopy. 32

Image of FIG. 9.

Click to view

FIG. 9.

Predicted indenter temperature shift upon contact as a function of the temperature difference between the indenter and sample surfaces.

Image of FIG. 10.

Click to view

FIG. 10.

An exemplar temperature matching procedure using indenter temperature shift magnitudes to infer the isothermal contact temperature, which coincides with surface thermocouple measurements.

Image of FIG. 11.

Click to view

FIG. 11.

Variation of Young's modulus with temperature of diamond, 41 cubic boron nitride, 41 boron carbide, 42 silicon carbide, 43 and sapphire. 44,45

Image of FIG. 12.

Click to view

FIG. 12.

Results of Berkovich indentation showing (a) load-displacement curves from each temperature uncorrected for thermal drift and offset for viewing and (b) comparison of Hardness and Elastic Modulus to literature values. 5,14,15,20,47

Image of FIG. 13.

Click to view

FIG. 13.

Young's modulus of ⟨100⟩ silicon showing (a) corrections to micro-compression data and (b) micro-compression results compared to flexural literature values 49,50 as a function of temperature.

Image of FIG. 14.

Click to view

FIG. 14.

Engineering stress-strain curves for ⟨100⟩ silicon as a function of temperature and accompanying in situ SE micrographs illustrating the failure modes.

Image of FIG. 15.

Click to view

FIG. 15.

Yield strength of silicon as a function of temperature comparing to literature values of upper yield from micro-compression 29 and micro-tension 61 and of lower yield values from bulk compression using high hydrostatic confining pressure. 60,62–64

Tables

Generic image for table

Click to view

Table I.

Summary of various high temperature challenges and solutions presented in this work.

Loading

Article metrics loading...

/content/aip/journal/rsi/84/4/10.1063/1.4795829
2013-04-03
2014-04-18

Abstract

A general nano-mechanical test platform capable of performing variable temperature and variable strain rate testing in situ in the scanning electron microscope is described. A variety of test geometries are possible in combination with focused ion beam machining or other fabrication techniques: indentation, micro-compression, cantilever bending, and scratch testing. The system is intrinsically displacement-controlled, which allows it to function directly as a micro-scale thermomechanical test frame. Stable, elevated temperature indentation/micro-compression requires the indenter tip and the sample to be in thermal equilibrium to prevent thermal displacement drift due to thermal expansion. This is achieved through independent heating and temperature monitoring of both the indenter tip and sample. Furthermore, the apex temperature of the indenter tip is calibrated, which allows it to act as a referenced surface temperature probe during contact. A full description of the system is provided, and the effects of indenter geometry and of radiation on imaging conditions are discussed. The stabilization time and temperature distribution throughout the system as a function of temperature is characterized. The advantages of temperature monitoring and thermal calibration of the indenter tip are illustrated, which include the possibility of local thermal conductivity measurement. Finally, validation results using nanoindentation on fused silica and micro-compression of ⟨100⟩ silicon micro-pillars as a function of temperature up to 500 °C are presented, and procedures and considerations taken for these measurements are discussed. A brittle to ductile transition from fracture to splitting then plastic deformation is directly observed in the SEM for silicon as a function of temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/4/1.4795829.html;jsessionid=ns9dr68d6qmf.x-aip-live-03?itemId=/content/aip/journal/rsi/84/4/10.1063/1.4795829&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/4/10.1063/1.4795829
10.1063/1.4795829
SEARCH_EXPAND_ITEM