1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/4/10.1063/1.4795829
1.
1. D. S. Gianola and C. Eberl, JOM 61(3), 2435 (2009).
http://dx.doi.org/10.1007/s11837-009-0037-3
2.
2. D. Kiener, C. Motz, G. Dehm, and R. Pippan, Int. J. Mater. Res. 100(8), 10741087 (2009).
http://dx.doi.org/10.3139/146.110149
3.
3. M. Legros, D. S. Gianola, and C. Motz, MRS Bull. 35(5), 354360 (2010).
http://dx.doi.org/10.1557/mrs2010.567
4.
4. S. Syed Asif, K. Wahl, R. Colton, and O. Warren, J. Appl. Phys. 90(3), 11921200 (2001).
http://dx.doi.org/10.1063/1.1380218
5.
5. C. A. Schuh, C. E. Packard, and A. C. Lund, J. Mater. Res. 21(3), 725736 (2006).
http://dx.doi.org/10.1557/jmr.2006.0080
6.
6. C. Niederberger, W. M. Mook, X. Maeder, and J. Michler, Mater. Sci. Eng., A 527(16–17), 43064311 (2010).
http://dx.doi.org/10.1016/j.msea.2010.03.055
7.
7. X. Maeder, W. M. Mook, C. Niederberger, and J. Michler, Philos. Mag. 91(7–9), 10971107 (2011).
http://dx.doi.org/10.1080/14786435.2010.505178
8.
8. R. Ghisleni, J. Liu, R. Raghavan, P. Brodard, A. Lugstein, K. Wasmer, and J. Michler, Philos. Mag. 91(7–9), 12861292 (2010).
http://dx.doi.org/10.1080/14786435.2010.495358
9.
9. S. Ruffell, J. Bradby, J. Williams, and O. Warren, J. Mater. Res. 22(03), 578586 (2007).
http://dx.doi.org/10.1557/jmr.2007.0100
10.
10. L. Fang, C. L. Muhlstein, J. G. Collins, A. L. Romasco, and L. H. Friedman, J. Mater. Res. 23(09), 24802485 (2008).
http://dx.doi.org/10.1557/jmr.2008.0298
11.
11. H. H. Nguyen, P. J. Wei, and J. F. Lin, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2(1), 015007 (2011).
http://dx.doi.org/10.1088/2043-6262/2/1/015007
12.
12. M. Smolka, C. Motz, T. Detzel, W. Robl, T. Griesser, A. Wimmer, and G. Dehm, Rev. Sci. Instrum. 83(6), 064702 (2012).
http://dx.doi.org/10.1063/1.4725529
13.
13. Z. Duan and A. Hodge, JOM 61(12), 3236 (2009).
http://dx.doi.org/10.1007/s11837-009-0177-5
14.
14. J. C. Trenkle, C. E. Packard, and C. A. Schuh, Rev. Sci. Instrum. 81(7), 073901 (2010).
http://dx.doi.org/10.1063/1.3436633
15.
15. N. M. Everitt, M. I. Davies, and J. F. Smith, Philos. Mag. 91(7–9), 12211244 (2011).
http://dx.doi.org/10.1080/14786435.2010.496745
16.
16. K. V. Rajulapati, M. M. Biener, J. Biener, and A. M. Hodge, Philos. Mag. Lett. 90(1), 3542 (2009).
http://dx.doi.org/10.1080/09500830903356893
17.
17. J. M. Wheeler, R. Raghavan, and J. Michler, Mater. Sci. Eng., A 528(29–30), 87508756 (2011).
http://dx.doi.org/10.1016/j.msea.2011.08.057
18.
18. S. Korte, R. J. Stearn, J. M. Wheeler, and W. J. Clegg, J. Mater. Res. 27(1), 167176 (2011).
http://dx.doi.org/10.1557/jmr.2011.268
19.
19. J. F. Smith and S. Zheng, Surf. Eng. 16(2), 143146 (2000).
http://dx.doi.org/10.1179/026708400101517044
20.
20. B. D. Beake and J. F. Smith, Philos. Mag. A 82(10 SPEC.), 21792186 (2002).
http://dx.doi.org/10.1080/01418610208235727
21.
21. B. Beake, S. Goodes, and J. Smith, Z. Metallkd. 94(7), 17 (2003).
22.
22. J. Xia, C. X. Li, and H. Dong, Mater. Sci. Eng., A 354, 112120 (2003).
http://dx.doi.org/10.1016/S0921-5093(02)00902-4
23.
23. G. Fox-Rabinovich, B. Beake, J. Endrino, S. Veldhuis, R. Parkinson, L. Shuster, and M. Migranov, Surf. Coat. Technol. 200, 57385742 (2006).
http://dx.doi.org/10.1016/j.surfcoat.2005.08.132
24.
24. B. Beake, J. Smith, A. Gray, G. Fox-Rabinovich, S. Veldhuis, and J. Endrino, Surf. Coat. Technol. 201, 45854593 (2007).
http://dx.doi.org/10.1016/j.surfcoat.2006.09.118
25.
25. A. Gray and B. D. Beake, J. Nanosci. Nanotechnol. 7(7), 25302533 (2007).
http://dx.doi.org/10.1166/jnn.2007.440
26.
26. A. J. Muir Wood and T. W. Clyne, Acta Mater. 54(20), 56075615 (2006).
http://dx.doi.org/10.1016/j.actamat.2006.08.013
27.
27. A. J. Muir Wood, S. Sanjabi, Y. Q. Fu, Z. H. Barber, and T. W. Clyne, Surf. Coat. Technol. 202, 31153120 (2008).
http://dx.doi.org/10.1016/j.surfcoat.2007.11.011
28.
28. S. Korte and W. J. Clegg, Scr. Mater. 60(9), 807810 (2009).
http://dx.doi.org/10.1016/j.scriptamat.2009.01.029
29.
29. S. Korte, J. S. Barnard, R. J. Stearn, and W. J. Clegg, Int. J. Plast. 27(11), 18531866 (2011).
http://dx.doi.org/10.1016/j.ijplas.2011.05.009
30.
30. J. M. Wheeler, C. Niederberger, C. Tessarek, S. Christiansen, and J. Michler, Int. J. Plast. 40, 140151 (2013).
http://dx.doi.org/10.1016/j.ijplas.2012.08.001
31.
31. J. M. Wheeler, R. Raghavan, and J. Michler, Scr. Mater. 67(0), 125128 (2012).
http://dx.doi.org/10.1016/j.scriptamat.2012.03.039
32.
32. J. M. Wheeler, P. Brodard, and J. Michler, Philos. Mag. 92(25–27), 31283141 (2012).
http://dx.doi.org/10.1080/14786435.2012.674647
33.
33. J. Pfetzing-Micklich, R. Ghisleni, T. Simon, C. Somsen, J. Michler, and G. Eggeler, Mater. Sci. Eng., A 538, 265271 (2012).
http://dx.doi.org/10.1016/j.msea.2012.01.042
34.
34. J. M. Wheeler, R. A. Oliver, and T. W. Clyne, Diamond Relat. Mater. 19(11), 13481353 (2010).
http://dx.doi.org/10.1016/j.diamond.2010.07.004
35.
35. R. Rabe, J. M. Breguet, P. Schwaller, S. Stauss, F. J. Haug, J. Patscheider, and J. Michler, Thin Solid Films 469–470, 206213 (2004).
http://dx.doi.org/10.1016/j.tsf.2004.08.096
36.
36. R. Ghisleni, K. Rzepiejewska-Malyska, L. Philippe, P. Schwaller, and J. Michler, Microsc. Res. Tech. 72(3), 242249 (2009).
http://dx.doi.org/10.1002/jemt.20677
37.
37. J. W. Draper, London, Edinburgh Dublin Philos. Mag. J. Sci. 30, 345359 (1847).
38.
38. F. Giuliani, Ph.D. dissertation, University of Cambridge, 2005.
39.
39. J. Holman, Heat Transfer, 7th ed. (McGraw-Hill, London, 1992).
40.
40. CRC, Handbook of Chemistry and Physics, 57th ed. (CRC Press, Cleveland, 1976).
41.
41. F. Aguado and V. G. Baonza, Phys. Rev. B 73(2), 024111 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.024111
42.
42. S. R. Murthy, J. Mater. Sci. Lett. 4(5), 603605 (1985).
http://dx.doi.org/10.1007/BF00720044
43.
43. Z. Li and R. C. Bradt, Int. J. High Technol. Ceram. 4(1), 110 (1988).
http://dx.doi.org/10.1016/0267-3762(88)90060-4
44.
44. T. Goto, O. L. Anderson, I. Ohno, and S. Yamamoto, J. Geophys. Res. 94(B6), 75887602, doi:10.1029/JB094iB06p07588 (1989).
http://dx.doi.org/10.1029/JB094iB06p07588
45.
45. J. B. Wachtman, Jr., W. E. Tefft, D. G. Lam, Jr., and C. S. Apstein, Phys. Rev. 122(6), 17541759 (1961).
http://dx.doi.org/10.1103/PhysRev.122.1754
46.
46. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7(6), 15641583 (1992).
http://dx.doi.org/10.1557/JMR.1992.1564
47.
47. R. G. Munro, NISTIR 6853 (NIST, Gaithersburg, MD, 2002).
48.
48. M. D. Uchic, D. M. Dimiduk, J. N. Florando, and W. D. Nix, Science 305(5686), 986989 (2004).
http://dx.doi.org/10.1126/science.1098993
49.
49. N. Ono, K. Kitamura, K. Nakajima, and Y. Shimanuki, Jpn. J. Appl. Phys. 39, 368371 (2000).
http://dx.doi.org/10.1143/JJAP.39.368
50.
50. C.-H. Cho, Curr. Appl. Phys. 9(2), 538545 (2009).
http://dx.doi.org/10.1016/j.cap.2008.03.024
51.
51. L. J. Vandeperre, F. Giuliani, S. J. Lloyd, and W. J. Clegg, Acta Mater. 55(18), 63076315 (2007).
http://dx.doi.org/10.1016/j.actamat.2007.07.036
52.
52. I.-S. Choi, Y. Gan, D. Kaufmann, O. Kraft, and R. Schwaiger, J. Mater. Res. 27, 27522759 (2012).
http://dx.doi.org/10.1557/jmr.2012.18
53.
53. I. N. Sneddon, Proc. Cambridge Philos. Soc. 42, 2939 (1946).
http://dx.doi.org/10.1017/S0305004100022702
54.
54. H. Zhang, B. E. Schuster, Q. Wei, and K. T. Ramesh, Scr. Mater. 54(2), 181186 (2006).
http://dx.doi.org/10.1016/j.scriptamat.2005.06.043
55.
55. L. Barbieri, E. Wagner, and P. Hoffmann, Langmuir 23(4), 17231734 (2007).
http://dx.doi.org/10.1021/la0617964
56.
56. B. Moser, K. Wasmer, L. Barbieri, and J. Michler, J. Mater. Res. 22(4), 10041011 (2007).
http://dx.doi.org/10.1557/jmr.2007.0140
57.
57. F. Östlund, K. Rzepiejewska-Malyska, K. Leifer, L. M. Hale, Y. Tang, R. Ballarini, W. W. Gerberich, and J. Michler, Adv. Funct. Mater. 19(15), 24392444 (2009).
http://dx.doi.org/10.1002/adfm.200900418
58.
58. F. Ostlund, P. Howie, R. Ghisleni, S. Korte, K. Leifer, W. Clegg, and J. Michler, Philos. Mag. 91(7–9), 11901199 (2011).
http://dx.doi.org/10.1080/14786435.2010.509286
59.
59. P. R. Howie, S. Korte, and W. J. Clegg, J. Mater. Res. 27(01), 141151 (2012).
http://dx.doi.org/10.1557/jmr.2011.256
60.
60. J. Rabier, P. O. Renault, D. Eyidi, J. L. Demenet, J. Chen, H. Couvy, and L. Wang, Phys. Status Solidi C 4(8), 31103114 (2007).
http://dx.doi.org/10.1002/pssc.200675480
61.
61. S. Nakao, T. Ando, M. Shikida, and K. Sato, J. Micromech. Microeng. 16(4), 715720 (2006).
http://dx.doi.org/10.1088/0960-1317/16/4/007
62.
62. J. Castaing, P. Veyssiere, L. P. Kubin, and J. Rabier, Philos. Mag. A 44(6), 14071413 (1981).
http://dx.doi.org/10.1080/01418618108235821
63.
63. J. L. Demenet, Ph.D. dissertation, University of Poitiers, France, 1987.
64.
64. J. L. Demenet, J. C. Desoyer, J. Rabier, and P. Veyssiere, Scr. Metall. 18(1), 4145 (1984).
http://dx.doi.org/10.1016/0036-9748(84)90086-3
65.
65. S. Shim, H. Bei, M. K. Miller, G. M. Pharr, and E. P. George, Acta Mater. 57(2), 503510 (2009).
http://dx.doi.org/10.1016/j.actamat.2008.09.033
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/4/10.1063/1.4795829
Loading
/content/aip/journal/rsi/84/4/10.1063/1.4795829
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/4/10.1063/1.4795829
2013-04-03
2014-11-28

Abstract

A general nano-mechanical test platform capable of performing variable temperature and variable strain rate testing in situ in the scanning electron microscope is described. A variety of test geometries are possible in combination with focused ion beam machining or other fabrication techniques: indentation, micro-compression, cantilever bending, and scratch testing. The system is intrinsically displacement-controlled, which allows it to function directly as a micro-scale thermomechanical test frame. Stable, elevated temperature indentation/micro-compression requires the indenter tip and the sample to be in thermal equilibrium to prevent thermal displacement drift due to thermal expansion. This is achieved through independent heating and temperature monitoring of both the indenter tip and sample. Furthermore, the apex temperature of the indenter tip is calibrated, which allows it to act as a referenced surface temperature probe during contact. A full description of the system is provided, and the effects of indenter geometry and of radiation on imaging conditions are discussed. The stabilization time and temperature distribution throughout the system as a function of temperature is characterized. The advantages of temperature monitoring and thermal calibration of the indenter tip are illustrated, which include the possibility of local thermal conductivity measurement. Finally, validation results using nanoindentation on fused silica and micro-compression of ⟨100⟩ silicon micro-pillars as a function of temperature up to 500 °C are presented, and procedures and considerations taken for these measurements are discussed. A brittle to ductile transition from fracture to splitting then plastic deformation is directly observed in the SEM for silicon as a function of temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/4/1.4795829.html;jsessionid=11wnus9va16gq.x-aip-live-02?itemId=/content/aip/journal/rsi/84/4/10.1063/1.4795829&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/4/10.1063/1.4795829
10.1063/1.4795829
SEARCH_EXPAND_ITEM