1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Invited Review Article: Large ring lasers for rotation sensing
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/4/10.1063/1.4798216
1.
1. G. E. Stedman, H. R. Bilger, Li Ziyuan, M. P. Poulton, C. H. Rowe, I. Vetharaniam, and P. V. Wells, “Canterbury ring laser and tests for nonreciprocal phenomena,” Aust. J. Phys. 46, 87 (1993).
2.
2. T. Klügel and H. Wziontek, “Correcting gravimeters and tiltmeters for atmospheric mass attraction using operational weather models,” J. Geodyn. 48, 204 (2009).
http://dx.doi.org/10.1016/j.jog.2009.09.010
3.
3. O. Lodge, “Experiments on the absence of mechanical connection between ether and matter,” Philos. Trans. R. Soc. London, Ser. A 189, 149 (1897).
http://dx.doi.org/10.1098/rsta.1897.0006
4.
4. R. Anderson, H. R. Bilger, and G. E. Stedman, “The “Sagnac” effect: A century of Earth-rotated interferometers,” Am. J. Phys. 62(11), 975 (1994).
http://dx.doi.org/10.1119/1.17656
5.
5. O. Knopf, “Die Versuche von F. Harreß über die Geschwindigkeit des Lichtes in bewegten Körpern,” Ann. Phys. Vierte Folge 62, 389 (1920).
http://dx.doi.org/10.1002/andp.19203671302
6.
6. G. Sagnac, C. R. Acad. Sci. (Paris) 157, 708 (1913).
7.
7. M. Dresden and C. N. Yang, “Phase shift in a rotating neutron or optical interferometer,” Phys. Rev. D 20, 1846 (1979).
http://dx.doi.org/10.1103/PhysRevD.20.1846
8.
8. S. F. Jacobs and R. Zanoni, “Laser ring gyro of arbitrary shape and rotation axis,” Am. J. Phys. 50, 659 (1982).
http://dx.doi.org/10.1119/1.12777
9.
9. R. B. Hurst, J.-P. R. Wells, and G. E. Stedman, “An elementary proof of the geometrical dependence of the Sagnac effect,” J. Opt. A, Pure Appl. Opt. 9, 838 (2007).
http://dx.doi.org/10.1088/1464-4258/9/10/010
10.
10. G. E. Stedman, “Ring-laser tests of fundamental physics and geophysics,” Rep. Prog. Phys. 60, 615 (1997).
http://dx.doi.org/10.1088/0034-4885/60/6/001
11.
11. K. U. Schreiber, A. Velikoseltsev, A. J. Carr, and R. Franco-Anaya, “The application of fiber optic gyroscopes for the measurement of rotations in structural engineering,” Bull. Seismol. Soc. Am. 99(2B), 1207 (2009).
http://dx.doi.org/10.1785/0120080086
12.
12. H. Lefevre, The Fiber-Optic Gyroscope (Artech House, Boston, 1993).
13.
13. A. A. Michelson and H. G. Gale, “The effect of the Earth's rotation on the velocity of light,” Astrophys. J. 61, 140 (1925).
http://dx.doi.org/10.1086/142879
14.
14. S. Ezekiel and S. R. Balsamo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett. 30(9), 478 (1977).
http://dx.doi.org/10.1063/1.89455
15.
15. G. A. Sanders, M. G. Prentiss, and S. Ezekiel, “Passive ring resonator method for sensitive inertial rotation measurements in geophysics and relativity,” Opt. Lett. 6(11), 569 (1981).
http://dx.doi.org/10.1364/OL.6.000569
16.
16. F. Zarinetchi and S. Ezekiel, “Observation of lock-in behavior in a passive resonator gyroscope,” Opt. Lett. 11(6), 401 (1986).
http://dx.doi.org/10.1364/OL.11.000401
17.
17. W. M. Macek and D. T. M. Davies Jr., “Rotation rate sensing with travelling-wave ring lasers,” Appl. Phys. Lett. 2(3), 67 (1963).
http://dx.doi.org/10.1063/1.1753778
18.
18. K. U. Schreiber, T. Klügel, A. Velikoseltsev, W. Schlüter, G. E. Stedman, and J.-P. R. Wells, “The large ring laser G for continuous Earth rotation monitoring,” Pure Appl. Geophys. 166, 1485 (2009).
http://dx.doi.org/10.1007/s00024-004-0490-4
19.
19. K. U. Schreiber, G. E. Stedman, and T. Klügel, “Earth tide and tilt detection by a ring laser gyroscope,” J. Geophys. Res. 108(B2), 2132, doi:10.1029/2001JB000569 (2003).
http://dx.doi.org/10.1029/2001JB000569
20.
20. C. H. Volk, S. C. Gillespie, J. G. Mark, and D. A. Tazartes, “Multioscillator Ring Laser Gyroscopes and their Application,” Optical Gyros and their Application, RTO AGARDograph Vol. 339, Chap. 4 (1999).
21.
21. B. F. Chao, V. Dehant, R. S. Gross, R. D. Ray, D. A. Salstein, M. M. Watkins, and C. R. Wilson, “Space geodesy monitors mass transports in global geophysical fluids,” EOS Trans. Am. Geophys. Union 81(22), 247, doi:10.1029/00EO00172 (2000).
http://dx.doi.org/10.1029/00EO00172
22.
22. E. O. Schulz-DuBois, “Alternative interpretation of rotation rate sensing by ring laser,” IEEE J. Quantum Electron. QE-2(8), 299 (1966).
http://dx.doi.org/10.1109/JQE.1966.1074045
23.
23. T. Gustavson, P. Bouyer, and M. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78, 2046 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2046
24.
24. A. Lenef, T. Hammond, E. Smith, M. Chapman, R. Rubenstein, and D. Pritchard, “Rotation sensing with an atom interferometer,” Phys. Rev. Lett. 78, 760 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.760
25.
25. B. Höling, G. Leuchs, H. Ruder, and M. Schneider, “An argon ion ring laser as a gyroscope,” Appl. Phys. B 55, 46 (1992).
http://dx.doi.org/10.1007/BF00348612
26.
26. M. Vallet, R. Ghosh, A. Le Floch, T. Ruchon, F. Bretenaker, and J.-Y. Thepot, “Observation of magnetochiral birefringence,” Phys. Rev. Lett. 87, 183003 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.183003
27.
27. M. Lai, J.-C. Diels, and M. L. Dennis, “Nonreciprocal measurements in femtosecond ring lasers,” Opt. Lett. 17, 1535 (1992).
http://dx.doi.org/10.1364/OL.17.001535
28.
28. L. Arissian and J.-C. Diels, “Investigation of carrier to envelope phase and repetition rate: Fingerprints of mode locked laser cavities,” J. Phys. B: At. Mol. Opt. Phys. 42, 183001 (2009).
http://dx.doi.org/10.1088/0953-4075/42/18/183001
29.
29. R. W. Dunn, “Multimode ring laser lock-in,” Appl. Opt. 28, 2584 (1989).
http://dx.doi.org/10.1364/AO.28.002584
30.
30. S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, “Mode-coupling control in resonant devices: Application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.093902
31.
31. S. Schwartz, G. Feugnet, E. Lariontsev, and J.-P. Pocholle, “Oscillation regimes of a solid state laser gyroscope with active beat note stabilisation: From a chaotic device to a ring laser gyroscope,” Phys. Rev. A 76, 023807 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.023807
32.
32. S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, “Suppression of nonlinear interactions in resonant macroscopic quantum devices: The example of the solid state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.183901
33.
33. K. U. Schreiber, “Ringlasertechnologie für geowissenschaftliche Anwendungen,” in Habilitationsschrift, Mitteilungen des Bundesamtes für Kartographie und Geodäsie: Band 8 (1999).
34.
34. H. Bilger, G. E. Stedman, Z. Li, K. U. Schreiber, and M. Schneider, “Ring lasers for geodesy,” IEEE Trans. Instrum. Meas. 44(2), 468 (1995).
http://dx.doi.org/10.1109/19.377882
35.
35. R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE 61(10), 1380 (1973).
http://dx.doi.org/10.1109/PROC.1973.9292
36.
36. F. Aronowitz, The Laser Gyro, Laser Applications Vol. 1, edited by M. Ross (Academic Press, New York, 1971), p. 133.
37.
37. J. R. Wilkinson, “Ring lasers,” Prog. Quantum Electron. 11, 1 (1987).
http://dx.doi.org/10.1016/0079-6727(87)90003-6
38.
38. C. H. Rowe, K. U. Schreiber, S. J. Cooper, B. T. King, M. Poulton, and G. E. Stedman, “Design and operation of a very large ring laser gyroscope,” Appl. Opt. 38(12), 2516 (1999).
http://dx.doi.org/10.1364/AO.38.002516
39.
39. R. B. Hurst, G. E. Stedman, K. U. Schreiber, R. J. Thirkettle, R. D. Graham, N. Rabeendran, and J.-P. R. Wells, “Experiments with an 834 m2 ring laser interferometer,” J. Appl. Phys. 105, 113115 (2009).
http://dx.doi.org/10.1063/1.3133245
40.
40. G. E. Stedman, K. U. Schreiber, and H. R. Bilger, “On the detectability of the lense-thirring field from rotating laboratory masses using ring laser gyroscope interferometers,” Class. Quantum Grav. 20, 2527 (2003).
http://dx.doi.org/10.1088/0264-9381/20/13/305
41.
41. J. C. Harrison, “Cavity and topographic effects in tilt and strain measurement,” J. Geophys. Res. 81(2), 319, doi:10.1029/JB081i002p00319 (1976).
http://dx.doi.org/10.1029/JB081i002p00319
42.
42. R. W. Dunn, “Design of a triangular active ring laser 13 m on a side,” Appl. Opt. 37, 6405 (1998).
http://dx.doi.org/10.1364/AO.37.006405
43.
43. R. W. Dunn, H. H. Mahdi, and H. J. Al-Shukri, “Design of a relatively inexpensive ring laser seismic detector,” Bull. Seismol. Soc. Am. 99(2B), 1437 (2009).
http://dx.doi.org/10.1785/0120080092
44.
44. J. Belfi, N. Beverini, F. Bosi, G. Carelli, A. Di Virgilio, E. Maccioni, and M. Pizzocaro, “Rotational sensitivity of the G-Pisa gyrolaser,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 618 (2010).
http://dx.doi.org/10.1109/TUFFC.2010.1456
45.
45. J. Belfi, N. Beverini, F. Bosi, G. Carelli, A. Di Virgilio, E. Maccioni, A. Ortolan, and F. Stefani, “A 1.82 m2 ring laser gyroscope for nano-rotational motion sensing,” Appl. Phys. B 106(2), 271281 (2012).
http://dx.doi.org/10.1007/s00340-011-4721-y
46.
46. J. Belfi, N. Beverini, F. Bosi, G. Carelli, A. Di Virgilio, D. Kolker, E. Maccioni, A. Ortolan, R. Passaquieti, and F. Stefani, “Performance of “G-Pisa” ring laser gyro at the Virgo site,” J. Seismol. 16, 757766 (2012).
http://dx.doi.org/10.1007/s10950-012-9277-8
47.
47. R. B. Hurst, R. W. Dunn, K. U. Schreiber, R. J. Thirkettle, and G. K. MacDonald, “Mode behaviour in ultralarge ring lasers,” Appl. Opt. 43, 2337 (2004).
http://dx.doi.org/10.1364/AO.43.002337
48.
48. W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61 (1985).
http://dx.doi.org/10.1103/RevModPhys.57.61
49.
49. P. Milonni and J. Eberly, Lasers (Wiley & Sons, 1988), p. 589ff.
50.
50. J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice Hall, 2000).
51.
51. F. Aronowitz, Fundamentals of the Ring Laser Gyro, Optical Gyros and their Application, RTO AGARDograph Vol. 339, Chap. 3 (1999).
52.
52. A. Velikoseltsev, “The development of a sensor model for large ring lasers and their application in seismic studies, Ph.D. dissertation (Technische Universität München, 2005).
53.
53. U. E. Hochuli, P. Haldemann, and H. A. Li, “Factors influencing the relative frequency stability of He-Ne laser structures,” Rev. Sci. Instrum. 45(11), 1378 (1974).
http://dx.doi.org/10.1063/1.1686506
54.
54. W. E. Ahearn and R. E. Horstmann, “Nondestructive analysis for HeNe lasers,” IBM J. Res. Develop. 23(2), 128 (1979).
http://dx.doi.org/10.1147/rd.232.0128
55.
55. B. Pritsch, K. U. Schreiber, A. Velikoseltsev, and J.-P. R. Wells, “Scale-factor corrections in large ring lasers,” Appl. Phys. Lett. 91(6), 061115 (2007).
http://dx.doi.org/10.1063/1.2768639
56.
56. U. K. Schreiber, C. H. Rowe, D. N. Wright, S. J. Cooper, and G. E. Stedman, “Precision stabilization of the optical frequency in a large ring laser gyroscope,” Appl. Opt. 37, 8371 (1998).
http://dx.doi.org/10.1364/AO.37.008371
57.
57. K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Long term frequency stabilisation of a 16 m2 ring laser gyroscope,” Opt. Lett. 37(11), 1925 (2012).
http://dx.doi.org/10.1364/OL.37.001925
58.
58. D. G. C. Jones, M. D. Sayers, and L. Allen, “Mode self-locking in gas lasers,” J. Phys. A: Gen. Phys. 2, 95 (1968).
http://dx.doi.org/10.1088/0305-4470/2/1/013
59.
59. J. Holdaway, R. B. Hurst, R. Graham, N. Rabeendran, K. U. Schreiber, and J.-P. R. Wells, “Self-locked operation of large He-Ne ring laser gyroscopes,” Metrologia 49, 209 (2012).
http://dx.doi.org/10.1088/0026-1394/49/3/209
60.
60. Global Geodetic Observing System: Meeting the Requirements of a Global Society on a Changing Planet in 2020, edited by H.-P. Plag and M. Pearlman (Springer, 2009).
61.
61. T. Nilsson, J. Böhm, H. Schuh, U. Schreiber, A. Gebauer, and T. Klügel, “Combining VLBI and ring laser observations for determination of high frequency Earth rotation variation,” J. Geodyn. 62, 69 (2012).
http://dx.doi.org/10.1016/j.jog.2012.02.002
62.
62. W. Rabbel and J. Zschau, “Static deformations and gravity changes at the Earth's surface due to atmospheric loading,” J. Geophys. 56, 81 (1985).
63.
63. A. Weise, “Neigungsmessungen in der Geodynamik - Ergebnisse von der 3-Komponenten-Station Metsähovi,” Ph.D. dissertation (TU Clausthal, 1992), 180 pp.
64.
64. P. McClure, “Diurnal polar motion,” GSFC Rep. X-529-73-259 (Goddard Space Flight Center, Greenbelt, MD, 1973).
65.
65. V. Frede and V. Dehant, “Analytical versus semi-analytical determinations of the Oppolzer terms for a non-rigid Earth,” J. Geodesy 73, 94 (1999).
http://dx.doi.org/10.1007/s001900050223
66.
66. H. Moritz and I. I. Mueller, Earth Rotation. Theory and Observation (Ungar Publishing Co., New York, 1987).
67.
67. K. U. Schreiber, A. Velikoseltsev, M. Rothacher, T. Klügel, G. E. Stedman, and D. L. Wiltshire, “Direct measurement of diurnal polar motion by ring laser gyroscopes,” J. Geophys. Res. 109(B6), B06405, doi:10.1029/2003JB002803 (2004).
http://dx.doi.org/10.1029/2003JB002803
68.
68. A. Brzeziński, “Contribution to the theory of polar motion for an elastic Earth with liquid core,” Manuscr. Geod. 11, 226 (1986).
69.
69. K. Lambeck, The Earth's Variable Rotation: Geophysical Causes and Consequences (Cambridge University Press, New York, 1980).
70.
70. K. U. Schreiber, T. Klügel, J.-P. R. Wells, R. B. Hurst, and A. Gebauer, “How to detect the Chandler and the annual wobble of the Earth with a large ring laser gyroscope,” Phys. Rev. Lett. 107, 173904 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.173904
71.
71.See http://www.iers.org/MainDisp.csl?pid=36-9 for International Earth Rotation and Reference System Service.
72.
72. D. P. McLeod, G. E. Stedman, T. H. Webb, and K. U. Schreiber, “Comparison of standard and ring laser rotational seismograms,” Bull. Seismol. Soc. Am. 88, 1495 (1998).
73.
73. A. Pancha, T. H. Webb, G. E. Stedman, D. P. McLeod, and K. U. Schreiber, “Ring laser detection of rotations from teleseismic waves,” Geophys. Res. Lett. 27, 3553, doi:10.1029/2000GL011734 (2000).
http://dx.doi.org/10.1029/2000GL011734
74.
74. H. Igel, A. Cochard, J. Wassermann, A. Flaws, U. Schreiber, A. Velikoseltsev, and N. D. Pham, “Broad-band observations of earthquake-induced rotational ground motions,” Geophys. J. Int. 168(1), 182 (2007).
http://dx.doi.org/10.1111/j.1365-246X.2006.03146.x
75.
75. H. Igel, K. U. Schreiber, B. Schuberth, A. Flaws, A. Velikoseltsev, and A. Cochard, “Observation and modelling of rotational motions induced by distant large earthquakes: The M8.1 Tokachi-oki Earthquake September 25, 2003,” Geophys. Res. Lett. 32, L08309, doi:10.1029/2004GL022336 (2005).
http://dx.doi.org/10.1029/2004GL022336
76.
76. K. U. Schreiber, H. Igel, A. Velikoseltsev, A. Flaws, B. Schuberth, W. Drewitz, and F. Müller, “The GEOsensor project: rotations—A new observable for seismology,” in Observation of the Earth System from Space (Springer, 2005), p. 427.
77.
77. K. U. Schreiber, J. N. Hautmann, A. Velikoseltsev, J. Wassermann, H. Igel, J. Otero, F. Vernon, and J.-P. R. Wells, “Ring laser measurements of ground rotations for seismology,” Bull. Seismol. Soc. Am. 99(2B), 1190 (2009).
http://dx.doi.org/10.1785/0120080171
78.
78. K. U. Schreiber, G. E. Stedman, H. Igel, and A. Flaws, “Rotational motions in seismology: Theory, observation, simulation,” in Earthquake Source Asymmetry, Structural Media and Rotational Effects (Springer, 2006), Chap. 29.
79.
79. A. Cochard, H. Igel, B. Schuberth, W. Suryanto, A. Velikoseltsev, K. U. Schreiber, J. Wassermann, F. Scherbaum, and D. Vollmer, “Rotational motions in seismology: Theory, observation, simulation,” in Earthquake Source Asymmetry, Structural Media and Rotational Effects (Springer, 2006), Chap. 30.
80.
80. K. U. Schreiber, A. Velikoseltsev, G. E. Stedman, R. B. Hurst, and T. Klügel, “Large ring laser gyros as high resolution sensors for applications in geoscience,” in Proceedings of the 11th International Conference on Integrated Navigation Systems (St. Petersburg, 2004), p. 326.
81.
81. W. Suryanto, H. Igel, J. Wassermann, A. Cochard, B. Schuberth, D. Vollmer, F. Scherbaum, U. Schreiber, and A. Velikoseltsev, “First comparison of array-derived rotational ground motion with direct ring laser measurements,” Bull. Seismol. Soc. Am. 96(6), 2059 (2006).
http://dx.doi.org/10.1785/0120060004
82.
82. J. Belfi, N. Beverini, G. Carelli, A. Virgilio, E. Maccioni, G. Saccorotti, F. Stefani, and A. Velikoseltsev, “Horizontal rotation signals detected by ‘G-Pisa ring laser for the M w = 9.0, March 2011, Japan earthquake,” J. Seismol. 16(4), 767776 (2012).
http://dx.doi.org/10.1007/s10950-012-9276-9
83.
83. D. Kurrle, H. Igel, A-M. G. Ferreira, J. Wassermann, and U. Schreiber, “Can we estimate local Love wave dispersion properties from collocated amplitude measurements of translations and rotations?,” Geophys. Res. Lett. 37(4), 1, doi:10.1029/2009GL042215 (2010).
http://dx.doi.org/10.1029/2009GL042215
84.
84. J. Park, T-R. A. Song, J. Tromp, E. Okal, S. Stein, G. Roult, E. Clevede, G. Laske, H. Kanamori, P. Davis, J. Berger, C. Braitenberg, M. Van Camp, X. Lei, H. Sun, H. Xu, and S. Rosat, “Earth's free oscillations excited by the 26 December 2004 Sumatra-Andaman Earthquake,” Science 308(5725), 1139 (2005).
http://dx.doi.org/10.1126/science.1112305
85.
85. R. Widmer-Schnidrig and W. Zürn, “Perspectives for ring laser gyroscopes in low-frequency seismology,” Bull. Seismol. Soc. Am. 99(2B), 1199 (2009).
http://dx.doi.org/10.1785/0120080267
86.
86. H. Igel, M-F. Nader, D. Kurrle, A-M. G. Ferreira, J. Wassermann, and K. U. Schreiber, “Observations of Earth's toroidal free oscillations with a rotation sensor: The 2011 magnitude 9.0 Tohoku-Oki earthquake,” Geophys. Res. Lett. 38, L21303, doi:10.1029/2011GL049045 (2011).
http://dx.doi.org/10.1029/2011GL049045
87.
87. N. D. Pham, H. Igel, J. Wassermann, A. Cochard, and U. Schreiber, “The effect of tilt on interferometric rotation sensors,” Bull. Seismol. Soc. Am. 99(2B), 1352 (2009).
http://dx.doi.org/10.1785/0120080181
88.
88. C. Hadziioannou, P. Gaebler, U. Schreiber, J. Wassermann, and H. Igel, “Examining ambient noise using co-located measurements of rotational and translational motion,” J. Seismol. 16, 787 (2012).
http://dx.doi.org/10.1007/s10950-012-9288-5
89.
89. R. Franco-Anaya, A. J. Carr, and K. U. Schreiber, “Qualification of fibre-optic gyroscopes for civil engineering applications,” in Proceedings of the New Zealand Society of Earthquake Engineering (NZSEE) Conference, Wairakei, New Zealand, 2008.
90.
90. J. Müller and L. Biskupek, “Variations of the gravitational constant from lunar laser ranging data,” Class. Quantum Grav. 24, 4533 (2007).
http://dx.doi.org/10.1088/0264-9381/24/17/017
91.
91. J. Lense and H. Thirring, “Über den Einflußder Eigenrotation des Zentralkörpers auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie,” Phys. Z. 19, 156 (1918).
92.
92. A. Di Virgilio, K. U. Schreiber, A. Gebauer, J.-P. R. Wells, A. Tartaglia, J. Belfi, N. Beverini, and A. Ortolan, “A laser gyroscope to detect the gravito-magnetic effect on Earth,” Int. J. Mod. Phys. D 19(14), 2331 (2010).
http://dx.doi.org/10.1142/S0218271810018360
93.
93. F. Bosi, G. Cella, A. Di Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravitomagnetic effects by a multi-ring-laser gyroscope,” Phys. Rev. D 84(12), 122002 (2011).
http://dx.doi.org/10.1103/PhysRevD.84.122002
94.
94. R. D. Graham, R. B. Hurst, K. U. Schreiber, and J.-P. R. Wells, “Mode selection in an ultra large ring laser gyro,” Appl. Opt. 51(22), 5591 (2012).
http://dx.doi.org/10.1364/AO.51.005591
95.
95. T. L. Gustavson, A. Landragin, and M. A. Kasevich, Class. Quantum Grav. 17, 23852398 (2000).
http://dx.doi.org/10.1088/0264-9381/17/12/311
96.
96. Y. Sato and R. E. Packard, Rep. Prog. Phys. 75, 016401 (2012).
http://dx.doi.org/10.1088/0034-4885/75/1/016401
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/4/10.1063/1.4798216
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic of the 1925 Michelson and Gale experiment. The interferometer had a length of 603 m and a width of 334 m.

Image of FIG. 2.

Click to view

FIG. 2.

The C-II ring laser at the time of construction at Carl Zeiss (Oberkochen) at the end of the year 1996.

Image of FIG. 3.

Click to view

FIG. 3.

The G ring laser during a maintenance period in 2012. Copyright A. Heddergott of TU-München.

Image of FIG. 4.

Click to view

FIG. 4.

The basic construction layout of the heterolithic ring lasers. Reprinted with permission from K. U. Schreiber, J. N. Hautmann, A. Velikoseltsev, J. Wassermann, H. Igel, J. Otero, F. Vernon, and J.-P. R. Wells, Bull. Seismol. Soc. Am. 99(2B), 1190 (2009). Copyright 2009 The Seismological Society of America.

Image of FIG. 5.

Click to view

FIG. 5.

Top view of the corner box construction. Behind the mirror compartment one can see the arrangement for the combination of the two laser beams, composed out of two turning mirrors and a beam splitter. The photo-detector is contained in a cylindrical housing. Except for the beam combiner assembly, all corners have an identical structure.

Image of FIG. 6.

Click to view

FIG. 6.

The prototype of a large steel and concrete based ring laser called G-0, as constructed in the Cashmere caverns in 1997.

Image of FIG. 7.

Click to view

FIG. 7.

Illustration of the heterogeneously constructed UG-2 ring laser. Many small concrete foundations on the floor of the Cashmere cave support the 834 m2 ring laser structure. The laser is too large to capture on a single photograph due to the layout of the Cashmere caverns. The right part of the figure is reprinted with permission from R. B. Hurst, G. E. Stedman, K. U. Schreiber, R. J. Thirkettle, R. D. Graham, N. Rabeendran, and J.-P. R. Wells, J. Appl. Phys. 105, 113115 (2009). Copyright 2009 American Institute of Physics.

Image of FIG. 8.

Click to view

FIG. 8.

The GEOsensor ring laser located at the Pinon Flat Seismic Observatory near Anza in Southern California.

Image of FIG. 9.

Click to view

FIG. 9.

A large fiber optic gyroscope was built by winding 2.2 km of mono-mode fiber around the Zerodur disc of the G ring laser (left). The observed Earth rotation rate signal, taken at a rate of 400 Hz is presented on the right. For the photo copyright by A. Heddergott of TU München (2012).

Image of FIG. 10.

Click to view

FIG. 10.

Allan deviation of the large fiber optic gyroscope. Although the scale factor is much larger than that of the G ring laser, the measurements are dominated by white noise. There is a difference of more than 2 orders of magnitude between the two sensor realizations.

Image of FIG. 11.

Click to view

FIG. 11.

Relative Allan deviation of most of the large ring lasers of Table II . The data for the G ring laser were taken before the implementation of a laser cavity stabilization scheme.

Image of FIG. 12.

Click to view

FIG. 12.

Earth strain changes in the perimeter of UG-1 as measured in 2002. The black dots show the variation in the FSR, while the solid line represents the expected variations from a global strain model. An additional linear term accounts for the increase of temperature in the Cashmere Cavern over the course of these measurements.

Image of FIG. 13.

Click to view

FIG. 13.

Basic layout of the UG-2 ring laser. The laser beams are manipulated within the cavity by mirrors having high precision mounting on the corner monuments similar to that shown in Fig. 4 .

Image of FIG. 14.

Click to view

FIG. 14.

Example of the measured beam wander as obtained at corner 1 of UG-2. The vertical and horizontal excursions are within a factor of two of each other. Reprinted with permission from B. Pritsch, K. U. Schreiber, A. Velikoseltsev, and J.-P. R. Wells, Appl. Phys. Lett. 91(6), 061115 (2007). Copyright 2007 American Institute of Physics.

Image of FIG. 15.

Click to view

FIG. 15.

Time series of the Sagnac beat frequency caused by Earth rotation and monitored with the UG-2 ring laser. (a) shows the raw measurements of Earth rotation, (b) gives the improvement after the correction for the scale factor variations, and (c) is the final dataset after the removal of the contributions of the gain medium. The solid line in (b) is the model estimate of the contribution from the gain medium. Reprinted with permission from B. Pritsch, K. U. Schreiber, A. Velikoseltsev, and J.-P. R. Wells, Appl. Phys. Lett. 91(6), 061115 (2007). Copyright 2007 American Institute of Physics.

Image of FIG. 16.

Click to view

FIG. 16.

Time dependence of the variation of the ring laser scale factor over the period of the measurements. Reprinted with permission from B. Pritsch, K. U. Schreiber, A. Velikoseltsev, and J.-P. R. Wells, Appl. Phys. Lett. 91(6), 061115 (2007). Copyright 2007 American Institute of Physics.

Image of FIG. 17.

Click to view

FIG. 17.

(Left side) ADEV plot for the G-ring laser (a) with no stabilizing corrections, (b) with pressure and beam power stabilization, and (c) the theoretical irreducible noise limit shown for reference. The histogram of the optical frequency in the ring laser cavity relative to a He-Ne laser stabilized to an iodine transition is shown on the right side. Reprinted with permission from K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, Opt. Lett. 37(11), 1925 (2012). Copyright 2012, The Optical Society.

Image of FIG. 18.

Click to view

FIG. 18.

AVAR plot of the G-0 ring laser for operation on a single longitudinal mode and multiple modes in a mode-locked regime. Reprinted with permission from J. Holdaway, R. B. Hurst, R. Graham, N. Rabeendran, K. U. Schreiber, and J.-P. R. Wells, Metrologia 49, 209 (2012). Copyright 2012 IOP Publishing Ltd.

Image of FIG. 19.

Click to view

FIG. 19.

Underground installation of the G-ring. Reprinted with permission from K. U. Schreiber, T. Klügel, A. Velikoseltsev, W. Schlüter, G. E. Stedman, and J.-P. R. Wells, Pure Appl. Geophys. 166, 1485 (2009). Copyright 2009 Springer.

Image of FIG. 20.

Click to view

FIG. 20.

The angle θ between the ring laser normal n and the Earth rotation vector Ω can either be altered by local tilting of the instrument (a) or by changes of the orientation of the rotation axis with respect to the Earth body (b). Reprinted with permission from K. U. Schreiber, T. Klügel, A. Velikoseltsev, W. Schlüter, G. E. Stedman, and J.-P. R. Wells, Pure Appl. Geophys. 166, 1485 (2009). Copyright 2009 Springer.

Image of FIG. 21.

Click to view

FIG. 21.

Time series of the variations of the Earth rotation measurements of the G-ring after the mean value of the rotation rate has been subtracted. Superimposed is the theoretically expected contribution from the model of Brzeziński, 68 tidal tilts, the Chandler and the Annual wobble, and local tilt effects.

Image of FIG. 22.

Click to view

FIG. 22.

Spectrum of the G-ring taken from a dataset as long as 243 days. The major signals for diurnal polar motion and solid Earth tides are clearly visible.

Image of FIG. 23.

Click to view

FIG. 23.

Polar motion observed with VLBI as reported by the IERS. The dataset covers half of the year 2009 and the entire 2010. A value of 0.1 arc sec at the pole roughly corresponds to 2 m. The data section between April and July 2010 (marked with a thick line) was employed as the reference data for the ring laser measurements. Reprinted with permission from K. U. Schreiber, T. Klügel, J.-P. R. Wells, R. B. Hurst, and A. Gebauer, Phys. Rev. Lett. 107, 173904 (2011). Copyright 2011 by the American Physical Society.

Image of FIG. 24.

Click to view

FIG. 24.

Gyroscope measurements of the Chandler and the Annual wobble. The constant Earth rotation was removed to yield (a). Local tilt and diurnal polar motion corrections were applied. (b) The calculated contribution from the diurnal polar motion. (c) The residual signal. The combined effect of the Chandler and the Annual signal calculated from the C04 series data from VLBI measurements (solid line) is also shown. Reprinted with permission from K. U. Schreiber, T. Klügel, J.-P. R. Wells, R. B. Hurst, and A. Gebauer, Phys. Rev. Lett. 107, 173904 (2011). Copyright 2011 by the American Physical Society.

Image of FIG. 25.

Click to view

FIG. 25.

Comparison of the noise level of the G-ring before and after changing the cavity mirrors from ULE to fused silica. The shading corresponds to the secondary microseismic band. Reprinted with permission from C. Hadziioannou, P. Gaebler, U. Schreiber, J. Wassermann, and H. Igel, J. Seismol. 16, 787 (2012). Copyright 2009 Springer.

Image of FIG. 26.

Click to view

FIG. 26.

Display of a four storey building model structure, placed on a one-dimensional shake table. Transducers tied to a metal frame in the back of the laboratory are used for the measurement of the model excursions during the test. The detailed image on the right illustrates the utilization of the FOG during the test.

Image of FIG. 27.

Click to view

FIG. 27.

Timeseries of the observed displacement of the model during the simulated earthquake. The two independent measurement concepts show excellent agreement. Reprinted with permission from K. U. Schreiber, A. Velikoseltsev, A. J. Carr, and R. Franco-Anaya, Bull. Seismol. Soc. Am. 99(2B), 1207 (2009). Copyright 2009 The Seismological Society of America.

Image of FIG. 28.

Click to view

FIG. 28.

Variations of the continuously recorded rate of rotation of the Earth (3 h average) over one week. While the sensor resolution is nearly adequate for tests of theories of fundamental physics, there needs to be better control of small systematic error mechanisms in the measurement process.

Tables

Generic image for table

Click to view

Table I.

Summary of the reported resolution of a variety of rotation sensing devices.

Generic image for table

Click to view

Table II.

Summary of relevant physical properties of a number of rectangular large ring lasers. The table lists the sides a and b, the area enclosed, the perimeter, the finesse F, the quality factor Q, the ringdown time τ, the detection beam power p, the obtained frequency splitting f Sagnac, the corresponding lock-in threshold f lock-in as well as the inferred sensor resolution S.

Loading

Article metrics loading...

/content/aip/journal/rsi/84/4/10.1063/1.4798216
2013-04-09
2014-04-16

Abstract

Over the last two decades a series of large ring laser gyroscopes have been built having an unparalleled scale factor. These upscaled devices have improved the sensitivity and stability for rotation rate measurements by six orders of magnitude when compared to previous commercial developments. This progress has made possible entirely new applications of ring laser gyroscopes in the fields of geophysics, geodesy, and seismology. Ring lasers are currently the only viable measurement technology, which is directly referenced to the instantaneous rotation axis of the Earth. The sensor technology is rapidly developing. This is evidenced by the first experimentally viable proposals to make terrestrial tests of general relativistic effects such as the frame dragging of the rotating Earth.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/4/1.4798216.html;jsessionid=9gppnsueecu71.x-aip-live-06?itemId=/content/aip/journal/rsi/84/4/10.1063/1.4798216&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Invited Review Article: Large ring lasers for rotation sensing
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/4/10.1063/1.4798216
10.1063/1.4798216
SEARCH_EXPAND_ITEM