1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Invited Review Article: Large ring lasers for rotation sensing
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/4/10.1063/1.4798216
1.
1. G. E. Stedman, H. R. Bilger, Li Ziyuan, M. P. Poulton, C. H. Rowe, I. Vetharaniam, and P. V. Wells, “Canterbury ring laser and tests for nonreciprocal phenomena,” Aust. J. Phys. 46, 87 (1993).
2.
2. T. Klügel and H. Wziontek, “Correcting gravimeters and tiltmeters for atmospheric mass attraction using operational weather models,” J. Geodyn. 48, 204 (2009).
http://dx.doi.org/10.1016/j.jog.2009.09.010
3.
3. O. Lodge, “Experiments on the absence of mechanical connection between ether and matter,” Philos. Trans. R. Soc. London, Ser. A 189, 149 (1897).
http://dx.doi.org/10.1098/rsta.1897.0006
4.
4. R. Anderson, H. R. Bilger, and G. E. Stedman, “The “Sagnac” effect: A century of Earth-rotated interferometers,” Am. J. Phys. 62(11), 975 (1994).
http://dx.doi.org/10.1119/1.17656
5.
5. O. Knopf, “Die Versuche von F. Harreß über die Geschwindigkeit des Lichtes in bewegten Körpern,” Ann. Phys. Vierte Folge 62, 389 (1920).
http://dx.doi.org/10.1002/andp.19203671302
6.
6. G. Sagnac, C. R. Acad. Sci. (Paris) 157, 708 (1913).
7.
7. M. Dresden and C. N. Yang, “Phase shift in a rotating neutron or optical interferometer,” Phys. Rev. D 20, 1846 (1979).
http://dx.doi.org/10.1103/PhysRevD.20.1846
8.
8. S. F. Jacobs and R. Zanoni, “Laser ring gyro of arbitrary shape and rotation axis,” Am. J. Phys. 50, 659 (1982).
http://dx.doi.org/10.1119/1.12777
9.
9. R. B. Hurst, J.-P. R. Wells, and G. E. Stedman, “An elementary proof of the geometrical dependence of the Sagnac effect,” J. Opt. A, Pure Appl. Opt. 9, 838 (2007).
http://dx.doi.org/10.1088/1464-4258/9/10/010
10.
10. G. E. Stedman, “Ring-laser tests of fundamental physics and geophysics,” Rep. Prog. Phys. 60, 615 (1997).
http://dx.doi.org/10.1088/0034-4885/60/6/001
11.
11. K. U. Schreiber, A. Velikoseltsev, A. J. Carr, and R. Franco-Anaya, “The application of fiber optic gyroscopes for the measurement of rotations in structural engineering,” Bull. Seismol. Soc. Am. 99(2B), 1207 (2009).
http://dx.doi.org/10.1785/0120080086
12.
12. H. Lefevre, The Fiber-Optic Gyroscope (Artech House, Boston, 1993).
13.
13. A. A. Michelson and H. G. Gale, “The effect of the Earth's rotation on the velocity of light,” Astrophys. J. 61, 140 (1925).
http://dx.doi.org/10.1086/142879
14.
14. S. Ezekiel and S. R. Balsamo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett. 30(9), 478 (1977).
http://dx.doi.org/10.1063/1.89455
15.
15. G. A. Sanders, M. G. Prentiss, and S. Ezekiel, “Passive ring resonator method for sensitive inertial rotation measurements in geophysics and relativity,” Opt. Lett. 6(11), 569 (1981).
http://dx.doi.org/10.1364/OL.6.000569
16.
16. F. Zarinetchi and S. Ezekiel, “Observation of lock-in behavior in a passive resonator gyroscope,” Opt. Lett. 11(6), 401 (1986).
http://dx.doi.org/10.1364/OL.11.000401
17.
17. W. M. Macek and D. T. M. Davies Jr., “Rotation rate sensing with travelling-wave ring lasers,” Appl. Phys. Lett. 2(3), 67 (1963).
http://dx.doi.org/10.1063/1.1753778
18.
18. K. U. Schreiber, T. Klügel, A. Velikoseltsev, W. Schlüter, G. E. Stedman, and J.-P. R. Wells, “The large ring laser G for continuous Earth rotation monitoring,” Pure Appl. Geophys. 166, 1485 (2009).
http://dx.doi.org/10.1007/s00024-004-0490-4
19.
19. K. U. Schreiber, G. E. Stedman, and T. Klügel, “Earth tide and tilt detection by a ring laser gyroscope,” J. Geophys. Res. 108(B2), 2132, doi:10.1029/2001JB000569 (2003).
http://dx.doi.org/10.1029/2001JB000569
20.
20. C. H. Volk, S. C. Gillespie, J. G. Mark, and D. A. Tazartes, “Multioscillator Ring Laser Gyroscopes and their Application,” Optical Gyros and their Application, RTO AGARDograph Vol. 339, Chap. 4 (1999).
21.
21. B. F. Chao, V. Dehant, R. S. Gross, R. D. Ray, D. A. Salstein, M. M. Watkins, and C. R. Wilson, “Space geodesy monitors mass transports in global geophysical fluids,” EOS Trans. Am. Geophys. Union 81(22), 247, doi:10.1029/00EO00172 (2000).
http://dx.doi.org/10.1029/00EO00172
22.
22. E. O. Schulz-DuBois, “Alternative interpretation of rotation rate sensing by ring laser,” IEEE J. Quantum Electron. QE-2(8), 299 (1966).
http://dx.doi.org/10.1109/JQE.1966.1074045
23.
23. T. Gustavson, P. Bouyer, and M. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78, 2046 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2046
24.
24. A. Lenef, T. Hammond, E. Smith, M. Chapman, R. Rubenstein, and D. Pritchard, “Rotation sensing with an atom interferometer,” Phys. Rev. Lett. 78, 760 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.760
25.
25. B. Höling, G. Leuchs, H. Ruder, and M. Schneider, “An argon ion ring laser as a gyroscope,” Appl. Phys. B 55, 46 (1992).
http://dx.doi.org/10.1007/BF00348612
26.
26. M. Vallet, R. Ghosh, A. Le Floch, T. Ruchon, F. Bretenaker, and J.-Y. Thepot, “Observation of magnetochiral birefringence,” Phys. Rev. Lett. 87, 183003 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.183003
27.
27. M. Lai, J.-C. Diels, and M. L. Dennis, “Nonreciprocal measurements in femtosecond ring lasers,” Opt. Lett. 17, 1535 (1992).
http://dx.doi.org/10.1364/OL.17.001535
28.
28. L. Arissian and J.-C. Diels, “Investigation of carrier to envelope phase and repetition rate: Fingerprints of mode locked laser cavities,” J. Phys. B: At. Mol. Opt. Phys. 42, 183001 (2009).
http://dx.doi.org/10.1088/0953-4075/42/18/183001
29.
29. R. W. Dunn, “Multimode ring laser lock-in,” Appl. Opt. 28, 2584 (1989).
http://dx.doi.org/10.1364/AO.28.002584
30.
30. S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, “Mode-coupling control in resonant devices: Application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.093902
31.
31. S. Schwartz, G. Feugnet, E. Lariontsev, and J.-P. Pocholle, “Oscillation regimes of a solid state laser gyroscope with active beat note stabilisation: From a chaotic device to a ring laser gyroscope,” Phys. Rev. A 76, 023807 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.023807
32.
32. S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, “Suppression of nonlinear interactions in resonant macroscopic quantum devices: The example of the solid state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.183901
33.
33. K. U. Schreiber, “Ringlasertechnologie für geowissenschaftliche Anwendungen,” in Habilitationsschrift, Mitteilungen des Bundesamtes für Kartographie und Geodäsie: Band 8 (1999).
34.
34. H. Bilger, G. E. Stedman, Z. Li, K. U. Schreiber, and M. Schneider, “Ring lasers for geodesy,” IEEE Trans. Instrum. Meas. 44(2), 468 (1995).
http://dx.doi.org/10.1109/19.377882
35.
35. R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE 61(10), 1380 (1973).
http://dx.doi.org/10.1109/PROC.1973.9292
36.
36. F. Aronowitz, The Laser Gyro, Laser Applications Vol. 1, edited by M. Ross (Academic Press, New York, 1971), p. 133.
37.
37. J. R. Wilkinson, “Ring lasers,” Prog. Quantum Electron. 11, 1 (1987).
http://dx.doi.org/10.1016/0079-6727(87)90003-6
38.
38. C. H. Rowe, K. U. Schreiber, S. J. Cooper, B. T. King, M. Poulton, and G. E. Stedman, “Design and operation of a very large ring laser gyroscope,” Appl. Opt. 38(12), 2516 (1999).
http://dx.doi.org/10.1364/AO.38.002516
39.
39. R. B. Hurst, G. E. Stedman, K. U. Schreiber, R. J. Thirkettle, R. D. Graham, N. Rabeendran, and J.-P. R. Wells, “Experiments with an 834 m2 ring laser interferometer,” J. Appl. Phys. 105, 113115 (2009).
http://dx.doi.org/10.1063/1.3133245
40.
40. G. E. Stedman, K. U. Schreiber, and H. R. Bilger, “On the detectability of the lense-thirring field from rotating laboratory masses using ring laser gyroscope interferometers,” Class. Quantum Grav. 20, 2527 (2003).
http://dx.doi.org/10.1088/0264-9381/20/13/305
41.
41. J. C. Harrison, “Cavity and topographic effects in tilt and strain measurement,” J. Geophys. Res. 81(2), 319, doi:10.1029/JB081i002p00319 (1976).
http://dx.doi.org/10.1029/JB081i002p00319
42.
42. R. W. Dunn, “Design of a triangular active ring laser 13 m on a side,” Appl. Opt. 37, 6405 (1998).
http://dx.doi.org/10.1364/AO.37.006405
43.
43. R. W. Dunn, H. H. Mahdi, and H. J. Al-Shukri, “Design of a relatively inexpensive ring laser seismic detector,” Bull. Seismol. Soc. Am. 99(2B), 1437 (2009).
http://dx.doi.org/10.1785/0120080092
44.
44. J. Belfi, N. Beverini, F. Bosi, G. Carelli, A. Di Virgilio, E. Maccioni, and M. Pizzocaro, “Rotational sensitivity of the G-Pisa gyrolaser,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 618 (2010).
http://dx.doi.org/10.1109/TUFFC.2010.1456
45.
45. J. Belfi, N. Beverini, F. Bosi, G. Carelli, A. Di Virgilio, E. Maccioni, A. Ortolan, and F. Stefani, “A 1.82 m2 ring laser gyroscope for nano-rotational motion sensing,” Appl. Phys. B 106(2), 271281 (2012).
http://dx.doi.org/10.1007/s00340-011-4721-y
46.
46. J. Belfi, N. Beverini, F. Bosi, G. Carelli, A. Di Virgilio, D. Kolker, E. Maccioni, A. Ortolan, R. Passaquieti, and F. Stefani, “Performance of “G-Pisa” ring laser gyro at the Virgo site,” J. Seismol. 16, 757766 (2012).
http://dx.doi.org/10.1007/s10950-012-9277-8
47.
47. R. B. Hurst, R. W. Dunn, K. U. Schreiber, R. J. Thirkettle, and G. K. MacDonald, “Mode behaviour in ultralarge ring lasers,” Appl. Opt. 43, 2337 (2004).
http://dx.doi.org/10.1364/AO.43.002337
48.
48. W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61 (1985).
http://dx.doi.org/10.1103/RevModPhys.57.61
49.
49. P. Milonni and J. Eberly, Lasers (Wiley & Sons, 1988), p. 589ff.
50.
50. J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice Hall, 2000).
51.
51. F. Aronowitz, Fundamentals of the Ring Laser Gyro, Optical Gyros and their Application, RTO AGARDograph Vol. 339, Chap. 3 (1999).
52.
52. A. Velikoseltsev, “The development of a sensor model for large ring lasers and their application in seismic studies, Ph.D. dissertation (Technische Universität München, 2005).
53.
53. U. E. Hochuli, P. Haldemann, and H. A. Li, “Factors influencing the relative frequency stability of He-Ne laser structures,” Rev. Sci. Instrum. 45(11), 1378 (1974).
http://dx.doi.org/10.1063/1.1686506
54.
54. W. E. Ahearn and R. E. Horstmann, “Nondestructive analysis for HeNe lasers,” IBM J. Res. Develop. 23(2), 128 (1979).
http://dx.doi.org/10.1147/rd.232.0128
55.
55. B. Pritsch, K. U. Schreiber, A. Velikoseltsev, and J.-P. R. Wells, “Scale-factor corrections in large ring lasers,” Appl. Phys. Lett. 91(6), 061115 (2007).
http://dx.doi.org/10.1063/1.2768639
56.
56. U. K. Schreiber, C. H. Rowe, D. N. Wright, S. J. Cooper, and G. E. Stedman, “Precision stabilization of the optical frequency in a large ring laser gyroscope,” Appl. Opt. 37, 8371 (1998).
http://dx.doi.org/10.1364/AO.37.008371
57.
57. K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Long term frequency stabilisation of a 16 m2 ring laser gyroscope,” Opt. Lett. 37(11), 1925 (2012).
http://dx.doi.org/10.1364/OL.37.001925
58.
58. D. G. C. Jones, M. D. Sayers, and L. Allen, “Mode self-locking in gas lasers,” J. Phys. A: Gen. Phys. 2, 95 (1968).
http://dx.doi.org/10.1088/0305-4470/2/1/013
59.
59. J. Holdaway, R. B. Hurst, R. Graham, N. Rabeendran, K. U. Schreiber, and J.-P. R. Wells, “Self-locked operation of large He-Ne ring laser gyroscopes,” Metrologia 49, 209 (2012).
http://dx.doi.org/10.1088/0026-1394/49/3/209
60.
60. Global Geodetic Observing System: Meeting the Requirements of a Global Society on a Changing Planet in 2020, edited by H.-P. Plag and M. Pearlman (Springer, 2009).
61.
61. T. Nilsson, J. Böhm, H. Schuh, U. Schreiber, A. Gebauer, and T. Klügel, “Combining VLBI and ring laser observations for determination of high frequency Earth rotation variation,” J. Geodyn. 62, 69 (2012).
http://dx.doi.org/10.1016/j.jog.2012.02.002
62.
62. W. Rabbel and J. Zschau, “Static deformations and gravity changes at the Earth's surface due to atmospheric loading,” J. Geophys. 56, 81 (1985).
63.
63. A. Weise, “Neigungsmessungen in der Geodynamik - Ergebnisse von der 3-Komponenten-Station Metsähovi,” Ph.D. dissertation (TU Clausthal, 1992), 180 pp.
64.
64. P. McClure, “Diurnal polar motion,” GSFC Rep. X-529-73-259 (Goddard Space Flight Center, Greenbelt, MD, 1973).
65.
65. V. Frede and V. Dehant, “Analytical versus semi-analytical determinations of the Oppolzer terms for a non-rigid Earth,” J. Geodesy 73, 94 (1999).
http://dx.doi.org/10.1007/s001900050223
66.
66. H. Moritz and I. I. Mueller, Earth Rotation. Theory and Observation (Ungar Publishing Co., New York, 1987).
67.
67. K. U. Schreiber, A. Velikoseltsev, M. Rothacher, T. Klügel, G. E. Stedman, and D. L. Wiltshire, “Direct measurement of diurnal polar motion by ring laser gyroscopes,” J. Geophys. Res. 109(B6), B06405, doi:10.1029/2003JB002803 (2004).
http://dx.doi.org/10.1029/2003JB002803
68.
68. A. Brzeziński, “Contribution to the theory of polar motion for an elastic Earth with liquid core,” Manuscr. Geod. 11, 226 (1986).
69.
69. K. Lambeck, The Earth's Variable Rotation: Geophysical Causes and Consequences (Cambridge University Press, New York, 1980).
70.
70. K. U. Schreiber, T. Klügel, J.-P. R. Wells, R. B. Hurst, and A. Gebauer, “How to detect the Chandler and the annual wobble of the Earth with a large ring laser gyroscope,” Phys. Rev. Lett. 107, 173904 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.173904
71.
71.See http://www.iers.org/MainDisp.csl?pid=36-9 for International Earth Rotation and Reference System Service.
72.
72. D. P. McLeod, G. E. Stedman, T. H. Webb, and K. U. Schreiber, “Comparison of standard and ring laser rotational seismograms,” Bull. Seismol. Soc. Am. 88, 1495 (1998).
73.
73. A. Pancha, T. H. Webb, G. E. Stedman, D. P. McLeod, and K. U. Schreiber, “Ring laser detection of rotations from teleseismic waves,” Geophys. Res. Lett. 27, 3553, doi:10.1029/2000GL011734 (2000).
http://dx.doi.org/10.1029/2000GL011734
74.
74. H. Igel, A. Cochard, J. Wassermann, A. Flaws, U. Schreiber, A. Velikoseltsev, and N. D. Pham, “Broad-band observations of earthquake-induced rotational ground motions,” Geophys. J. Int. 168(1), 182 (2007).
http://dx.doi.org/10.1111/j.1365-246X.2006.03146.x
75.
75. H. Igel, K. U. Schreiber, B. Schuberth, A. Flaws, A. Velikoseltsev, and A. Cochard, “Observation and modelling of rotational motions induced by distant large earthquakes: The M8.1 Tokachi-oki Earthquake September 25, 2003,” Geophys. Res. Lett. 32, L08309, doi:10.1029/2004GL022336 (2005).
http://dx.doi.org/10.1029/2004GL022336
76.
76. K. U. Schreiber, H. Igel, A. Velikoseltsev, A. Flaws, B. Schuberth, W. Drewitz, and F. Müller, “The GEOsensor project: rotations—A new observable for seismology,” in Observation of the Earth System from Space (Springer, 2005), p. 427.
77.
77. K. U. Schreiber, J. N. Hautmann, A. Velikoseltsev, J. Wassermann, H. Igel, J. Otero, F. Vernon, and J.-P. R. Wells, “Ring laser measurements of ground rotations for seismology,” Bull. Seismol. Soc. Am. 99(2B), 1190 (2009).
http://dx.doi.org/10.1785/0120080171
78.
78. K. U. Schreiber, G. E. Stedman, H. Igel, and A. Flaws, “Rotational motions in seismology: Theory, observation, simulation,” in Earthquake Source Asymmetry, Structural Media and Rotational Effects (Springer, 2006), Chap. 29.
79.
79. A. Cochard, H. Igel, B. Schuberth, W. Suryanto, A. Velikoseltsev, K. U. Schreiber, J. Wassermann, F. Scherbaum, and D. Vollmer, “Rotational motions in seismology: Theory, observation, simulation,” in Earthquake Source Asymmetry, Structural Media and Rotational Effects (Springer, 2006), Chap. 30.
80.
80. K. U. Schreiber, A. Velikoseltsev, G. E. Stedman, R. B. Hurst, and T. Klügel, “Large ring laser gyros as high resolution sensors for applications in geoscience,” in Proceedings of the 11th International Conference on Integrated Navigation Systems (St. Petersburg, 2004), p. 326.
81.
81. W. Suryanto, H. Igel, J. Wassermann, A. Cochard, B. Schuberth, D. Vollmer, F. Scherbaum, U. Schreiber, and A. Velikoseltsev, “First comparison of array-derived rotational ground motion with direct ring laser measurements,” Bull. Seismol. Soc. Am. 96(6), 2059 (2006).
http://dx.doi.org/10.1785/0120060004
82.
82. J. Belfi, N. Beverini, G. Carelli, A. Virgilio, E. Maccioni, G. Saccorotti, F. Stefani, and A. Velikoseltsev, “Horizontal rotation signals detected by ‘G-Pisa ring laser for the M w = 9.0, March 2011, Japan earthquake,” J. Seismol. 16(4), 767776 (2012).
http://dx.doi.org/10.1007/s10950-012-9276-9
83.
83. D. Kurrle, H. Igel, A-M. G. Ferreira, J. Wassermann, and U. Schreiber, “Can we estimate local Love wave dispersion properties from collocated amplitude measurements of translations and rotations?,” Geophys. Res. Lett. 37(4), 1, doi:10.1029/2009GL042215 (2010).
http://dx.doi.org/10.1029/2009GL042215
84.
84. J. Park, T-R. A. Song, J. Tromp, E. Okal, S. Stein, G. Roult, E. Clevede, G. Laske, H. Kanamori, P. Davis, J. Berger, C. Braitenberg, M. Van Camp, X. Lei, H. Sun, H. Xu, and S. Rosat, “Earth's free oscillations excited by the 26 December 2004 Sumatra-Andaman Earthquake,” Science 308(5725), 1139 (2005).
http://dx.doi.org/10.1126/science.1112305
85.
85. R. Widmer-Schnidrig and W. Zürn, “Perspectives for ring laser gyroscopes in low-frequency seismology,” Bull. Seismol. Soc. Am. 99(2B), 1199 (2009).
http://dx.doi.org/10.1785/0120080267
86.
86. H. Igel, M-F. Nader, D. Kurrle, A-M. G. Ferreira, J. Wassermann, and K. U. Schreiber, “Observations of Earth's toroidal free oscillations with a rotation sensor: The 2011 magnitude 9.0 Tohoku-Oki earthquake,” Geophys. Res. Lett. 38, L21303, doi:10.1029/2011GL049045 (2011).
http://dx.doi.org/10.1029/2011GL049045
87.
87. N. D. Pham, H. Igel, J. Wassermann, A. Cochard, and U. Schreiber, “The effect of tilt on interferometric rotation sensors,” Bull. Seismol. Soc. Am. 99(2B), 1352 (2009).
http://dx.doi.org/10.1785/0120080181
88.
88. C. Hadziioannou, P. Gaebler, U. Schreiber, J. Wassermann, and H. Igel, “Examining ambient noise using co-located measurements of rotational and translational motion,” J. Seismol. 16, 787 (2012).
http://dx.doi.org/10.1007/s10950-012-9288-5
89.
89. R. Franco-Anaya, A. J. Carr, and K. U. Schreiber, “Qualification of fibre-optic gyroscopes for civil engineering applications,” in Proceedings of the New Zealand Society of Earthquake Engineering (NZSEE) Conference, Wairakei, New Zealand, 2008.
90.
90. J. Müller and L. Biskupek, “Variations of the gravitational constant from lunar laser ranging data,” Class. Quantum Grav. 24, 4533 (2007).
http://dx.doi.org/10.1088/0264-9381/24/17/017
91.
91. J. Lense and H. Thirring, “Über den Einflußder Eigenrotation des Zentralkörpers auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie,” Phys. Z. 19, 156 (1918).
92.
92. A. Di Virgilio, K. U. Schreiber, A. Gebauer, J.-P. R. Wells, A. Tartaglia, J. Belfi, N. Beverini, and A. Ortolan, “A laser gyroscope to detect the gravito-magnetic effect on Earth,” Int. J. Mod. Phys. D 19(14), 2331 (2010).
http://dx.doi.org/10.1142/S0218271810018360
93.
93. F. Bosi, G. Cella, A. Di Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravitomagnetic effects by a multi-ring-laser gyroscope,” Phys. Rev. D 84(12), 122002 (2011).
http://dx.doi.org/10.1103/PhysRevD.84.122002
94.
94. R. D. Graham, R. B. Hurst, K. U. Schreiber, and J.-P. R. Wells, “Mode selection in an ultra large ring laser gyro,” Appl. Opt. 51(22), 5591 (2012).
http://dx.doi.org/10.1364/AO.51.005591
95.
95. T. L. Gustavson, A. Landragin, and M. A. Kasevich, Class. Quantum Grav. 17, 23852398 (2000).
http://dx.doi.org/10.1088/0264-9381/17/12/311
96.
96. Y. Sato and R. E. Packard, Rep. Prog. Phys. 75, 016401 (2012).
http://dx.doi.org/10.1088/0034-4885/75/1/016401
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/4/10.1063/1.4798216
Loading
/content/aip/journal/rsi/84/4/10.1063/1.4798216
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/4/10.1063/1.4798216
2013-04-09
2014-08-23

Abstract

Over the last two decades a series of large ring laser gyroscopes have been built having an unparalleled scale factor. These upscaled devices have improved the sensitivity and stability for rotation rate measurements by six orders of magnitude when compared to previous commercial developments. This progress has made possible entirely new applications of ring laser gyroscopes in the fields of geophysics, geodesy, and seismology. Ring lasers are currently the only viable measurement technology, which is directly referenced to the instantaneous rotation axis of the Earth. The sensor technology is rapidly developing. This is evidenced by the first experimentally viable proposals to make terrestrial tests of general relativistic effects such as the frame dragging of the rotating Earth.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/4/1.4798216.html;jsessionid=3bsjbmtagomrt.x-aip-live-02?itemId=/content/aip/journal/rsi/84/4/10.1063/1.4798216&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Invited Review Article: Large ring lasers for rotation sensing
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/4/10.1063/1.4798216
10.1063/1.4798216
SEARCH_EXPAND_ITEM