1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Formation of nanostructure and nano-hardness characterization on the meso-scale workpiece by a novel laser indirect shock forming method
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/4/10.1063/1.4798670
1.
1. G. J. Cheng, D. Pirzada, and M. Zhou, J. Appl. Phys. 101, 063108 (2007).
http://dx.doi.org/10.1063/1.2710334
2.
2. H. Gao and G. J. Cheng, J. Microelectromech. Syst. 19(2), 273 (2010).
http://dx.doi.org/10.1109/JMEMS.2010.2040947
3.
3. M. Zhou, Y. K. Zhang, and L. Cai, J. Appl. Phys. 91, 5501 (2002).
http://dx.doi.org/10.1063/1.1459624
4.
4. H. Gao and G. J. Cheng, J. Appl. Phys. 109, 103511 (2011).
http://dx.doi.org/10.1063/1.3590144
5.
5. J. Z. Zhou, J. C. Yang, Y. K. Zhang, and M. Zhou, J. Mater. Process. Technol. 129, 241 (2002).
http://dx.doi.org/10.1016/S0924-0136(02)00609-X
6.
6. M. Zhou, Y. K. Zhang, and L. Cai, Appl. Phys. A 77, 549 (2003).
http://dx.doi.org/10.1007/s00339-002-1491-8
7.
7. C. Zheng, S. Sun, Z. Ji, and W. Wang, Appl. Surf. Sci. 257, 1589 (2010).
http://dx.doi.org/10.1016/j.apsusc.2010.08.099
8.
8. H. X. Liu, Z. B. Shen, X. Wang, and H. J. Wang, J. Appl. Phys. 106, 063107 (2009).
http://dx.doi.org/10.1063/1.3212992
9.
9. B. P. Kashyap, Acta Mater. 50, 2413 (2002).
http://dx.doi.org/10.1016/S1359-6454(02)00073-3
10.
10. H. X. Liu, H. J. Wang, Z. B. Shen, Z. H. Huang, W. Li, Y. Y. Zheng, and X. Wang, Int. J. Mach. Tools Manuf. 54–55, 18 (2012).
http://dx.doi.org/10.1016/j.ijmachtools.2011.12.004
11.
11. H. X. Liu, Z. B. Shen, X. Wang, P. Li, Y. Hu, and C. X. Gu, Opt. Laser Technol. 44, 1987 (2012).
http://dx.doi.org/10.1016/j.optlastec.2012.02.010
12.
12. V. S. Balanethiram, X. Hu, M. Altynova, and G. S. Daehn, J. Mater. Process. Technol. 45, 595 (1994).
http://dx.doi.org/10.1016/0924-0136(94)90404-9
13.
13. V. F. Nesterenko, M. A. Meyers, J. C. LaSalvia, M. P. Bondar, Y. J. Chen, and Y. L. Lukyanov, Mater. Sci. Eng., A 229, 23 (1997).
http://dx.doi.org/10.1016/S0921-5093(96)10847-9
14.
14. M. A. Meyers and H.-R. Pak, Acta Metall. 34, 2493 (1986).
http://dx.doi.org/10.1016/0001-6160(86)90152-5
15.
15. W. Zhang and Y. L. Yao, ASME J. Manuf. Sci. Eng. 124, 369 (2002).
http://dx.doi.org/10.1115/1.1445149
16.
16. N. R. Tao and K. Lu, Scr. Mater. 60, 1039 (2009).
http://dx.doi.org/10.1016/j.scriptamat.2009.02.008
17.
17. Y. S. Li, N. R. Tao, and K. Lu, Acta Mater. 56, 230 (2008).
http://dx.doi.org/10.1016/j.actamat.2007.09.020
18.
18. K. Wang, N. R. Tao, G. Liu, J. Lu, and K. Lu, Acta Mater. 54, 5281 (2006).
http://dx.doi.org/10.1016/j.actamat.2006.07.013
19.
19. M. O. Lai and K. B. Lim, J. Mater. Sci. 26(8), 2031 (1991).
http://dx.doi.org/10.1007/BF00549163
20.
20. W. S. Zhao, N. R. Tao, J. Y. Guo, Q. H. Lu, and K. Lu, Scr. Mater. 53, 745 (2005).
http://dx.doi.org/10.1016/j.scriptamat.2005.05.022
21.
21. G. Z. Liu, N. R. Tao, and K. Lu, J. Mater. Sci. Technol. 26(4), 289 (2010).
http://dx.doi.org/10.1016/S1005-0302(10)60048-5
22.
22. L. E. Murr, E. Moin, and F. Greulich, Scr. Metall. 12, 1031 (1978).
http://dx.doi.org/10.1016/0036-9748(78)90019-4
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/4/10.1063/1.4798670
Loading
/content/aip/journal/rsi/84/4/10.1063/1.4798670
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/4/10.1063/1.4798670
2013-04-04
2014-09-19

Abstract

The meso-scale workpiece with greatly enhanced mechanical properties is potential to be widely used in the electronics productions and micro-electro mechanical systems. In this study, it demonstrates that the meso-scale cup-shape workpiece with good geometry can be obtained by a novel laser indirect shock forming method. After the forming process, the mechanical properties and microstructures of the formed workpiece were characterized. By transmission electron microscope observation, it was found that a mixed refined microstructure consisting of nano-scale twins embedded in nano-sized grains was produced at the center of the formed sample. Formation of these nanograins could be mainly attributed to two mechanisms: twin-twin intersections and twin/matrix lamellae fragmentation. By nanoindentation tests, it reveals that the hardness of the sample has increased greatly after laser shock forming and the hardness increases with the laser energy. The elevated hardness originates from a considerable number of nano-scale twins and nanograins, which possess a pretty high strength due to the significant effects of grain boundary strengthening and twin boundary strengthening.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/4/1.4798670.html;jsessionid=24om14f773gcu.x-aip-live-03?itemId=/content/aip/journal/rsi/84/4/10.1063/1.4798670&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Formation of nanostructure and nano-hardness characterization on the meso-scale workpiece by a novel laser indirect shock forming method
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/4/10.1063/1.4798670
10.1063/1.4798670
SEARCH_EXPAND_ITEM