1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Ultrafast ultrasonic imaging coupled to rheometry: Principle and illustration
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/4/10.1063/1.4801462
1.
1. R. G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, 1999).
2.
2. P. D. Olmsted, “Perspectives on shear banding in complex fluids,” Rheol. Acta 47, 283 (2008).
http://dx.doi.org/10.1007/s00397-008-0260-9
3.
3. S. Manneville, “Recent experimental probes of shear banding,” Rheol. Acta 47, 301 (2008).
http://dx.doi.org/10.1007/s00397-007-0246-z
4.
4. P. Schall and M. van Hecke, “Shear bands in matter with granularity,” Annu. Rev. Fluid Mech. 42, 67 (2010).
http://dx.doi.org/10.1146/annurev-fluid-121108-145544
5.
5. A. Magnin and J. Piau, “Cone-and-plate rheometry of yield stress fluids. Study of an aqueous gel,” J. Non-Newtonian Fluid Mech. 36, 85 (1990).
http://dx.doi.org/10.1016/0377-0257(90)85005-J
6.
6. F. Pignon, A. Magnin, and J.-M. Piau, “Thixotropic colloidal suspensions and flow curves with minimum: Identification of flow regimes and rheometric consequences,” J. Rheol. 40, 573 (1996).
http://dx.doi.org/10.1122/1.550759
7.
7. P. Grondin, S. Manneville, J.-L. Pozzo, and A. Colin, “Shear-induced fractures and three-dimensional motions in an organogel,” Phys. Rev. E 77, 011401 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.011401
8.
8. J. R. Seth, M. Cloitre, and R. T. Bonnecaze, “Influence of short-range forces on wall-slip in microgel pastes,” J. Rheol. 52, 1241 (2008).
http://dx.doi.org/10.1122/1.2963135
9.
9. M. P. Lettinga and S. Manneville, “Competition between shear banding and wall slip in wormlike micelles,” Phys. Rev. Lett. 103, 248302 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.248302
10.
10. H. Tabuteau, S. Mora, G. Porte, M. Abkarian, and C. Ligoure, “Microscopic mechanisms of the brittleness of viscoelastic fluids,” Phys. Rev. Lett. 102, 155501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.155501
11.
11. R. Buscall, “Wall slip in dispersion rheometry,” J. Rheol. 54, 1177 (2010).
http://dx.doi.org/10.1122/1.3495981
12.
12. J. R. Seth, C. Locatelli-Champagne, F. Monti, R. T. Bonnecaze, and M. Cloitre, “How do soft particle glasses yield and flow near solid surfaces?Soft Matter 8, 140 (2012).
http://dx.doi.org/10.1039/c1sm06074k
13.
13. H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction to Rheology (Elsevier, Amsterdam, 1989).
14.
14. C. W. Macosko, Rheology: Principles, Measurements, and Applications (Wiley-VCH, 1994).
15.
15. J.-B. Salmon, S. Manneville, A. Colin, and B. Pouligny, “An optical fiber based interferometer to measure velocity profiles in sheared complex fluids,” Eur. Phys. J.: Appl. Phys. 22, 143 (2003).
http://dx.doi.org/10.1051/epjap:2003014
16.
16. M. W. Liberatore, F. Nettesheim, N. J. Wagner, and L. Porcar, “Spatially resolved small-angle neutron scattering in the 1-2 plane: A study of shear-induced phase-separating wormlike micelles,” Phys. Rev. E 73, 020504 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.020504
17.
17. S. E. Welch, M. R. Stetzer, G. Hu, E. B. Sirota, and S. H. J. Idziak, “Intermembrane spacing and velocity profiling of a lamellar lyotropic complex fluid under flow using x-ray diffraction,” Phys. Rev. E 65, 061511 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.061511
18.
18. E. Cappelaere, J.-F. Berret, J.-P. Decruppe, R. Cressely, and P. Lindner, “Rheology, birefringence, and small-angle neutron scattering in a charged micellar system: Evidence of a shear-induced phase transition,” Phys. Rev. E 56, 1869 (1997).
http://dx.doi.org/10.1103/PhysRevE.56.1869
19.
19. S. Lerouge, J.-P. Decruppe, and P. Olmsted, “Birefringence banding in a micellar solution or the complexity of heterogeneous flows,” Langmuir 20, 11355 (2004).
http://dx.doi.org/10.1021/la0481593
20.
20. Y. T. Hu and A. Lips, “Kinetics and mechanism of shear banding in an entangled micellar solution,” J. Rheol. 49, 1001 (2005).
http://dx.doi.org/10.1122/1.2008295
21.
21. E. Miller and J. P. Rothstein, “Transient evolution of shear-banding wormlike micellar solutions,” J. Non-Newtonian Fluid Mech. 143, 22 (2007).
http://dx.doi.org/10.1016/j.jnnfm.2006.12.005
22.
22. P. E. Boukany, O. Hemminger, S.-Q. Wang, and L. J. Lee, “Molecular imaging of slip in entangled dna solution,” Phys. Rev. Lett. 105, 027802 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.027802
23.
23. S. Manneville, L. Bécu, and A. Colin, “High-frequency ultrasonic speckle velocimetry in sheared complex fluids,” Eur. Phys. J.: Appl. Phys. 28, 361 (2004).
http://dx.doi.org/10.1051/epjap:2004165
24.
24. P. T. Callaghan, “Rheo nmr and shear banding,” Rheol. Acta 47, 243 (2008).
http://dx.doi.org/10.1007/s00397-007-0251-2
25.
25. L. Bécu, S. Manneville, and A. Colin, “Spatio-temporal dynamics of wormlike micelles under shear,” Phys. Rev. Lett. 93, 018301 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.018301
26.
26. L. Bécu, D. Anache, S. Manneville, and A. Colin, “Evidence for three-dimensional unstable flows in shear-banding wormlike micelles,” Phys. Rev. E 76, 011503 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.011503
27.
27. M.-A. Fardin and S. Lerouge, “Instabilities in wormlike micelle systems: From shear-banding to elastic turbulence,” Eur. Phys. J. E 35, 91 (2012).
http://dx.doi.org/10.1140/epje/i2012-12091-0
28.
28. R. Buscall, J. I. McGowan, and A. J. Morton-Jones, “The rheology of concentrated dispersions of weakly attracting colloidal particles with and without wall slip,” J. Rheol. 37, 621 (1993).
http://dx.doi.org/10.1122/1.550387
29.
29. T. Gibaud, C. Barentin, and S. Manneville, “Influence of boundary conditions on yielding in a soft glassy material,” Phys. Rev. Lett. 101, 258302 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.258302
30.
30. H. A. Barnes and D. Bell, “Controlled-stress rotational rheometry : An historical review,” Korea-Aust. Rheol. J. 15, 187 (2003).
31.
31. A. D. Pierce, Acoustics. An Introduction to Its Physical Principles and Applications (American Institute of Physics, 1994).
32.
32.See supplementary material at http://dx.doi.org/10.1063/1.4801462 for movies corresponding to ultrasonic signal analysis and velocity field images recorded simultaneously to rheological data. [Supplementary Material]
33.
33. J. A. Jensen, Estimation of Blood Velocities Using Ultrasound (Cambridge University Press, 1996).
34.
34. H. B. Kim, J. R. Hertzberg, and R. Shandas, “Development and validation of echo piv,” Exp. Fluids 36, 455 (2004).
http://dx.doi.org/10.1007/s00348-003-0743-5
35.
35. M. Qian, L. Niu, Y. Wang, and B. Jiang, “Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-epiv),” Phys. Med. Biol. 55, 6069 (2010).
http://dx.doi.org/10.1088/0031-9155/55/20/003
36.
36. L. Sandrin, S. Catheline, M. Tanter, X. Hennequin, and M. Fink, “Time-resolved pulsed elastography with ultrafast ultrasonic imaging,” Ultrason. Imaging 21, 259 (1999).
http://dx.doi.org/10.1177/016173469902100402
37.
37. G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, “Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 489 (2009).
http://dx.doi.org/10.1109/TUFFC.2009.1067
38.
38. H. Zheng, L. Liu, L. Williams, J. Hertzberg, C. Lanning, and R. Shandas, “Real time multicomponent echo particle image velocimetry technique for opaque flow imaging,” Appl. Phys. Lett. 88, 261915 (2006).
http://dx.doi.org/10.1063/1.2216875
39.
39. J. H. Page, M. L. Cowan, and D. A. Weitz, “Diffusing acoustic wave spectroscopy of fluidized suspensions,” Physica B 279, 130 (2000).
http://dx.doi.org/10.1016/S0921-4526(99)00698-5
40.
40. K. W. Ferrara, B. G. Zagar, J. B. Sokil-Melgar, R. H. Silverman, and I. M. Aslanidis, “Estimation of blood velocity with high frequency ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 149 (1996).
http://dx.doi.org/10.1109/58.484474
41.
41. L. Sandrin, S. Manneville, and M. Fink, “Ultrafast two-dimensional ultrasonic speckle velocimetry: A tool in flow imaging,” Appl. Phys. Lett. 78, 1155 (2001).
http://dx.doi.org/10.1063/1.1350622
42.
42. S. Manneville, L. Sandrin, and M. Fink, “Investigating a stretched vortex with ultrafast two-dimensional ultrasonic speckle velocimetry,” Phys. Fluids 13, 1683 (2001).
http://dx.doi.org/10.1063/1.1370388
43.
43. G. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, 2000).
44.
44. R. Kouitat, G. Maurice, and M. Lucius, “Etude du régime de mise en mouvement dans un viscosimètre de couette à cylindres coaxiaux,” Rheol. Acta 29, 332 (1990).
http://dx.doi.org/10.1007/BF01339888
45.
45. G. Taylor, “Stability of a viscous liquid contained between two rotating cylinders,” Philos. Trans. R. Soc. London, Ser. A 223, 289 (1923).
http://dx.doi.org/10.1098/rsta.1923.0008
46.
46. D. Andereck, S. Liu, and H. Swinney, “Flow regimes in a circular Couette system with independently rotating cylinders,” J. Fluid Mech. 164, 155 (1986).
http://dx.doi.org/10.1017/S0022112086002513
47.
47. A. Davey, “The growth of taylor vortices in flow between rotating cylinders,” J. Fluid Mech. 14, 336 (1962).
http://dx.doi.org/10.1017/S0022112062001287
48.
48. S. Wereley and R. Lueptow, “Spatio-temporal character of non-wavy and wavy taylor-couette flow,” J. Fluid Mech. 364, 59 (1998).
http://dx.doi.org/10.1017/S0022112098008969
49.
49. A. Akonur and R. Lueptow, “Three-dimensional velocity field for wavy taylor–couette flow,” Phys. Fluids 15, 947 (2003).
http://dx.doi.org/10.1063/1.1556615
50.
50. L. Raguin and J. Georgiadis, “Kinematics of the stationary helical vortex mode in taylor-couette-poiseuille flow,” J. Fluid Mech. 516, 125 (2004).
http://dx.doi.org/10.1017/S002211200400059X
51.
51. H. Rehage and H. Hoffmann, “Viscoelastic surfactant solutions: model systems for rheological research,” Mol. Phys. 74, 933 (1991).
http://dx.doi.org/10.1080/00268979100102721
52.
52. J.-F. Berret, “Rheology of wormlike micelles: Equilibrium properties and shear banding transition,” in Molecular Gels, edited by P. Terech and R. Weiss (Elsevier, 2005); e-print arXiv:cond-mat/0406681.
53.
53. M. Cates and S. Fielding, “Rheology of giant micelles,” Adv. Phys. 55, 799 (2006).
http://dx.doi.org/10.1080/00018730601082029
54.
54. S. Lerouge and J. Berret, “Shear-induced transitions and instabilities in surfactant wormlike micelles,” Adv. Polym. Sci. 230, 1 (2010).
http://dx.doi.org/10.1007/12_2009_13
55.
55. R. G. Larson, E. S. G. Shaqfeh, and S. J. Muller, “A purely elastic transition in taylor-couette flow,” J. Fluid Mech. 218, 573 (1990).
http://dx.doi.org/10.1017/S0022112090001124
56.
56. R. Larson, “Instabilities in viscoelastic flows,” Rheol. Acta 31, 213 (1992).
http://dx.doi.org/10.1007/BF00366504
57.
57. A. Morozov and W. van Saarloos, “An introductory essay on subcritical instabilities and the transition to turbulence in visco-elastic parallel shear flows,” Phys. Rep. 447, 112 (2007).
http://dx.doi.org/10.1016/j.physrep.2007.03.004
58.
58. J.-B. Salmon, A. Colin, S. Manneville, and F. Molino, “Velocity profiles in shear-banding wormlike micelles,” Phys. Rev. Lett. 90, 228303 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.228303
59.
59. M.-A. Fardin, T. J. Ober, V. Grenard, T. Divoux, S. Manneville, G. H. McKinley, and S. Lerouge, “Interplay between elastic instabilities and shear-banding: three categories of taylor-couette flows and beyond,” Soft Matter 8, 10072 (2012).
http://dx.doi.org/10.1039/c2sm26313k
60.
60. M.-A. Fardin, T. J. Ober, C. Gay, G. Grégoire, G. H. McKinley, and S. Lerouge, “Potential ways of thinking about the shear-banding phenomenon,” Soft Matter 8, 910 (2012).
http://dx.doi.org/10.1039/c1sm06165h
61.
61. M.-A. Fardin, T. Divoux, M.-A. Guedeau-Boudeville, I. Buchet-Maulien, J. Browaeys, G. H. McKinley, S. Manneville, and S. Lerouge, “Shear-banding in surfactant wormlike micelles: elastic instabilities and wall slip,” Soft Matter 8, 2535 (2012).
http://dx.doi.org/10.1039/c2sm06992j
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/4/10.1063/1.4801462
Loading
/content/aip/journal/rsi/84/4/10.1063/1.4801462
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/4/10.1063/1.4801462
2013-04-16
2015-03-04

Abstract

We describe a technique coupling standard rheology and ultrasonic imaging with promising applications to characterization of soft materials under shear. Plane wave imaging using an ultrafast scanner allows to follow the local dynamics of fluids sheared between two concentric cylinders with frame rates as high as 10 000 images per second, while simultaneously monitoring the shear rate, shear stress, and viscosity as a function of time. The capacities of this “rheo-ultrasound” instrument are illustrated on two examples: (i) the classical case of the Taylor-Couette instability in a simple viscous fluid and (ii) the unstable shear-banded flow of a non-Newtonian wormlike micellar solution.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/4/1.4801462.html;jsessionid=3vmjrt48bhrvj.x-aip-live-02?itemId=/content/aip/journal/rsi/84/4/10.1063/1.4801462&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ultrafast ultrasonic imaging coupled to rheometry: Principle and illustration
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/4/10.1063/1.4801462
10.1063/1.4801462
SEARCH_EXPAND_ITEM