1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Wide-area scanner for high-speed atomic force microscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/5/10.1063/1.4803449
1.
1. M. B. Viani, L. I. Pietrasanta, J. B. Thompson, A. Chand, I. C. Gebeshuber, J. H. Kindt, M. Richter, H. G. Hansma, and P. K. Hansma, Nat. Struct. Biol. 7, 644 (2000).
http://dx.doi.org/10.1038/77936
2.
2. T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito, and A. Toda, Proc. Natl. Acad. Sci. U.S.A. 98, 12468 (2001).
http://dx.doi.org/10.1073/pnas.211400898
3.
3. A. D. L. Humphris, M. J. Miles, and J. K. Hobbs, Appl. Phys. Lett. 86, 034106 (2005).
http://dx.doi.org/10.1063/1.1855407
4.
4. T. Ando, Nanotechnology 23, 062001 (2012).
http://dx.doi.org/10.1088/0957-4484/23/6/062001
5.
5. Y. Shinozaki, K. Sumitomo, M. Tsuda, S. Koizumi, K. Inoue, and K. Torimitsu, PLoS Biol. 7, e103 (2009).
http://dx.doi.org/10.1371/journal.pbio.1000103
6.
6. N. Kodera, D. Yamamoto, R. Ishikawa, and T. Ando, Nature (London) 468, 72 (2010).
http://dx.doi.org/10.1038/nature09450
7.
7. M. Shibata, H. Yamashita, T. Uchihashi, H. Kandori, and T. Ando, Nat. Nanotechnol. 5, 208 (2010).
http://dx.doi.org/10.1038/nnano.2010.7
8.
8. M. Shibata, T. Uchihashi, H. Yamashita, H. Kandori, and T. Ando, Angew. Chem., Int. Ed. 50, 4410 (2011).
http://dx.doi.org/10.1002/anie.201007544
9.
9. T. Uchihashi, R. Iino, T. Ando, and H. Noji, Science 333, 755 (2011).
http://dx.doi.org/10.1126/science.1205510
10.
10. S. F. J. Wickham, M. Endo, Y. Katsuda, K. Hidaka, J. Bath, H. Sugiyama, and A. J. Turberfield, Nat. Nanotechnol. 6, 166 (2011).
http://dx.doi.org/10.1038/nnano.2010.284
11.
11. D. Yamamoto, N. Nagura, S. Omote, M. Taniguchi, and T. Ando, Biophys. J. 97, 2358 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.07.046
12.
12. I. Casuso, P. Sens, F. Rico, and S. Scheuring, Biophys. J. 99, L47 (2010).
http://dx.doi.org/10.1016/j.bpj.2010.07.028
13.
13. K. Igarashi, T. Uchihashi, A. Koivula, M. Wada, S. Kimura, T. Okamoto, M. Penttilä, T. Ando, and M. Samejima, Science 333, 1279 (2011).
http://dx.doi.org/10.1126/science.1208386
14.
14. D. Yamamoto, T. Uchihashi, N. Kodera, and T. Ando, Nanotechnology 19, 384009 (2008).
http://dx.doi.org/10.1088/0957-4484/19/38/384009
15.
15. H. Yamashita, K. Voïtchovsky, T. Uchihashi, S. A. Contera, J. F. Ryan, and T. Ando, J. Struct. Biol. 167, 153 (2009).
http://dx.doi.org/10.1016/j.jsb.2009.04.011
16.
16. A. Miyagi, Y. Tsunaka, T. Uchihashi, K. Mayanagi, S. Hirose, K. Morikawa, and T. Ando, Chem. Phys. Chem. 9, 1859 (2008).
http://dx.doi.org/10.1002/cphc.200800210
17.
17. G. Schitter and A. Stemmer, IEEE Trans. Control Syst. Technol. 12, 449 (2004).
http://dx.doi.org/10.1109/TCST.2004.824290
18.
18. I. Choi, Y. Kim, J. H. Kim, Y. I. Yang, J. Lee, S. Lee, S. Hong, and J. Yi, Nanotechnology 19, 445701 (2008).
http://dx.doi.org/10.1088/0957-4484/19/44/445701
19.
19. A. J. Fleming, B. J. Kenton, and K. K. Leang, Ultramicroscopy 110, 1205 (2010).
http://dx.doi.org/10.1016/j.ultramic.2010.04.016
20.
20. G. E. Fantner, R. J. Barbero, D. S. Gray, and A. M. Belcher, Nat. Nanotechnol. 5, 280 (2010).
http://dx.doi.org/10.1038/nnano.2010.29
21.
21. G. Schitter, K. J. Åström, B. E. DeMartini, P. J. Thurner, K. L. Turner, and P. K. Hansma, IEEE Trans. Control Syst. Technol. 15, 906 (2007).
http://dx.doi.org/10.1109/TCST.2007.902953
22.
22. J. H. Kindt, G. E. Fantner, J. A. Cutroni, and P. K. Hansma, Ultramicroscopy 100, 259265 (2004).
http://dx.doi.org/10.1016/j.ultramic.2003.11.009
23.
23. I. A. Mahmood and S. O. R. Moheimani, Nanotechnology 20, 365503 (2009).
http://dx.doi.org/10.1088/0957-4484/20/36/365503
24.
24. Y. K. Yong, S. O. R. Moheimani, and I. R. Petersen, Nanotechnology 21, 365503 (2010).
http://dx.doi.org/10.1088/0957-4484/21/36/365503
25.
25. A. Bazaei, Y. K. Yong, and S. O. R. Moheimani, Rev. Sci. Instrum. 83, 063701 (2012).
http://dx.doi.org/10.1063/1.4725525
26.
26. Y. Li and J. Bechhoefer, Rev. Sci. Instrum. 78, 013702 (2007).
http://dx.doi.org/10.1063/1.2403839
27.
27. A. J. Fleming and A. G. Wills, in Proceedings of the IFAC World Congress, Seoul, Korea, 7–11 July (Elsevier, Netherlands, 2008), p. 11805.
28.
28. K. K. Leang and A. J. Fleming, Asian J. Control 11, 144 (2009).
http://dx.doi.org/10.1002/asjc.90
29.
29. P. Ge and M. Jouaneh, IEEE Trans. Control Syst. Technol. 4, 209 (1996).
http://dx.doi.org/10.1109/87.491195
30.
30. S. K. Hung, E. T. Hwu, I. S. Hwang, and L. C. Fu, Jpn. J. Appl. Phys. 45, 1917 (2006).
http://dx.doi.org/10.1143/JJAP.45.1917
31.
31. B. Mokaberi and A. A. G. Requicha, IEEE Trans. Autom. Sci. Eng. 5, 197 (2008).
http://dx.doi.org/10.1109/TASE.2007.895008
32.
32. T. Ando, T. Uchihashi, and T. Fukuma, Prog. Surf. Sci. 83, 337 (2008).
http://dx.doi.org/10.1016/j.progsurf.2008.09.001
33.
33. T. Ando, T. Uchihashi, and N. Kodera, Jpn. J. Appl. Phys. 51, 08KA02 (2012).
http://dx.doi.org/10.1143/JJAP.51.08KA02
34.
34. N. Kodera, H. Yamashita, and T. Ando, Rev. Sci. Instrum. 76, 053708 (2005).
http://dx.doi.org/10.1063/1.1903123
35.
35. N. Kodera, M. Sakashita, and T. Ando, Rev. Sci. Instrum. 77, 083704 (2006).
http://dx.doi.org/10.1063/1.2336113
36.
36. A. Ryter and O. E. Landman, J. Bacteriol. 88, 457 (1964).
37.
37. J. Ghuysen, Bacteriol. Rev. 32, 425 (1968).
38.
38. T. J. Smith, S. A. Blackman, and S. J. Foster, Microbiology 146, 249 (2000).
39.
39. T. Mitchison and M. Kirschner, Neuron 1, 761 (1988).
http://dx.doi.org/10.1016/0896-6273(88)90124-9
40.
40. P. Forscher and S. J. Smith, J. Cell Biol. 107, 1505 (1988).
http://dx.doi.org/10.1083/jcb.107.4.1505
41.
41. J. P. Gorvel, P. Chavier, M. Zerial, and J. Gruenberg, Cell 64, 915 (1991).
http://dx.doi.org/10.1016/0092-8674(91)90316-Q
42.
42. M. A. Barbieri, G. Li, M. I. Colombo, and P. D. Stahl, J. Biol. Chem. 269, 1872018722 (1994).
43.
43. C. Bucci, R. G. Parton, I. H. Mather, H. Stunnenberg, K. Simons, B. Hoflack, and M. Zerial, Cell 70, 715728 (1992).
http://dx.doi.org/10.1016/0092-8674(92)90306-W
44.
44. A. I. Shevchuk, P. Novak, M. Taylor, I. A. Diakonov, A. Ziyadeh-Isleem, M. Bitoun, P. Guicheney, M. J. Lab, J. Gorelik, C. J. Merrifield, D. Klenerman, and Y. E. Korchev, J. Cell. Biol. 197, 499508 (2012).
http://dx.doi.org/10.1083/jcb.201109130
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/5/10.1063/1.4803449
Loading
/content/aip/journal/rsi/84/5/10.1063/1.4803449
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/5/10.1063/1.4803449
2013-05-03
2014-08-28

Abstract

High-speed atomic force microscopy (HS-AFM) has recently been established. The dynamic processes and structural dynamics of protein molecules in action have been successfully visualized using HS-AFM. However, its maximum scan ranges in the X- and Y-directions have been limited to ∼1 m and ∼4 m, respectively, making it infeasible to observe the dynamics of much larger samples, including live cells. Here, we develop a wide-area scanner with a maximum XY scan range of ∼46 × 46 m by magnifying the displacements of stack piezoelectric actuators using a leverage mechanism. Mechanical vibrations produced by fast displacement of the X-scanner are suppressed by a combination of feed-forward inverse compensation and the use of triangular scan signals with rounded vertices. As a result, the scan speed in the X-direction reaches 6.3 mm/s even for a scan size as large as ∼40 m. The nonlinearity of the X- and Y-piezoelectric actuators’ displacements that arises from their hysteresis is eliminated by polynomial-approximation-based open-loop control. The interference between the X- and Y-scanners is also eliminated by the same technique. The usefulness of this wide-area scanner is demonstrated by video imaging of dynamic processes in live bacterial and eukaryotic cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/5/1.4803449.html;jsessionid=bmlhjs2m40bek.x-aip-live-02?itemId=/content/aip/journal/rsi/84/5/10.1063/1.4803449&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Wide-area scanner for high-speed atomic force microscopy
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/5/10.1063/1.4803449
10.1063/1.4803449
SEARCH_EXPAND_ITEM