1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/5/10.1063/1.4803933
1.
1. I. Chorkendorff and J. W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, 2nd ed. (Wiley-VCH, Weinheim, 2007).
2.
2. A. L. Utz, Curr. Opin. Solid State Mater. Sci. 13(1–2), 412 (2009).
http://dx.doi.org/10.1016/j.cossms.2009.01.004
3.
3. L. B. F. Juurlink, D. R. Killelea, and A. L. Utz, Prog. Surf. Sci. 84(3–4), 69134 (2009).
http://dx.doi.org/10.1016/j.progsurf.2009.01.001
4.
4. R. D. Beck and A. L. Utz, in Dynamics of Gas-Surface Interactions: Atomic-Level Understanding of Scattering Processes at Surfaces, edited by R. Díez Muiño and H. F. Busnengo (Springer, 2013).
5.
5. R. D. Beck, P. Maroni, D. C. Papageorgopoulos, T. T. Dang, M. P. Schmid, and T. R. Rizzo, Science 302(5642), 98100 (2003).
http://dx.doi.org/10.1126/science.1088996
6.
6. P. Maroni, D. C. Papageorgopoulos, M. Sacchi, T. T. Dang, R. D. Beck, and T. R. Rizzo, Phys. Rev. Lett. 94(24), 246104 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.246104
7.
7. R. Bisson, M. Sacchi, and R. D. Beck, Phys. Rev. B 82(12), 121404R (2010).
http://dx.doi.org/10.1103/PhysRevB.82.121404
8.
8. D. R. Killelea, V. L. Campbell, N. S. Shuman, and A. L. Utz, Science 319(5864), 790793 (2008).
http://dx.doi.org/10.1126/science.1152819
9.
9. L. Chen, H. Ueta, R. Bisson, and R. D. Beck, Faraday Discuss. 157, 285295 (2012).
http://dx.doi.org/10.1039/c2fd20007d
10.
10. B. L. Yoder, R. Bisson, and R. D. Beck, Science 329(5991), 553556 (2010).
http://dx.doi.org/10.1126/science.1191751
11.
11. K. G. Prasanna, R. A. Olsen, A. Valdes, and G. J. Kroes, Phys. Chem. Chem. Phys. 12(27), 76547661 (2010).
http://dx.doi.org/10.1039/b924669j
12.
12. B. Jackson and S. Nave, J. Chem. Phys. 135(11), 114701 (2011).
http://dx.doi.org/10.1063/1.3634073
13.
13. M. P. Schmid, P. Maroni, R. D. Beck, and T. R. Rizzo, Rev. Sci. Instrum. 74(9), 41104120 (2003).
http://dx.doi.org/10.1063/1.1599064
14.
14. P. Maroni, D. Papageorgopoulos, A. Ruf, R. D. Beck, and T. R. Rizzo, Rev. Sci. Instrum. 77(5), 054103 (2006).
http://dx.doi.org/10.1063/1.2200876
15.
15. M. P. Schmid, P. Maroni, R. D. Beck, and T. R. Rizzo, J. Chem. Phys. 117(19), 86038606 (2002).
http://dx.doi.org/10.1063/1.1519860
16.
16. L. B. F. Juurlink, P. R. McCabe, R. R. Smith, C. L. DiCologero, and A. L. Utz, Phys. Rev. Lett. 83(4), 868871 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.868
17.
17. R. Bisson, T. T. Dang, M. Sacchi, and R. D. Beck, J. Chem. Phys. 129(8), 081103 (2008).
http://dx.doi.org/10.1063/1.2976563
18.
18. M. Trenary, Annu. Rev. Phys. Chem. 51, 381403 (2000).
http://dx.doi.org/10.1146/annurev.physchem.51.1.381
19.
19. F. M. Hoffmann, Surf. Sci. Rep. 3(2–3), 107 (1983).
http://dx.doi.org/10.1016/0167-5729(83)90001-8
20.
20. Y. J. Chabal, Surf. Sci. Rep. 8(5–7), 211357 (1988).
http://dx.doi.org/10.1016/0167-5729(88)90011-8
21.
21. S. L. Tang, J. D. Beckerle, M. B. Lee, and S. T. Ceyer, J. Chem. Phys. 84(11), 64886506 (1986).
http://dx.doi.org/10.1063/1.450746
22.
22. D. A. King and M. G. Wells, Proc. R. Soc. London, Ser. A 339(1617), 245269 (1974).
http://dx.doi.org/10.1098/rspa.1974.0120
23.
23. P. M. Hundt, R. Bisson, and R. D. Beck, J. Chem. Phys. 137(7), 074701 (2012).
http://dx.doi.org/10.1063/1.4742914
24.
24. J. T. Yates, Experimental Innovations in Surface Science: A Guide to Practical Laboratory Methods and Instruments (Springer, New York, 1998).
25.
25. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Annu. Rev. Phys. Chem. 52, 763809 (2001).
http://dx.doi.org/10.1146/annurev.physchem.52.1.763
26.
26. C. Liedenbaum, S. Stolte, and J. Reuss, Phys. Rep. 178(1), 124 (1989).
http://dx.doi.org/10.1016/0370-1573(89)90018-5
27.
27. P. R. McCabe, L. B. F. Juurlink, and A. L. Utz, Rev. Sci. Instrum. 71(1), 4253 (2000).
http://dx.doi.org/10.1063/1.1150158
28.
28. P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley-Interscience, Hoboken, 2007).
29.
29. I. J. Malik, M. E. Brubaker, S. B. Mohsin, and M. Trenary, J. Chem. Phys. 87(9), 55545561 (1987).
http://dx.doi.org/10.1063/1.453640
30.
30. D. J. Oakes, M. R. S. Mccoustra, and M. A. Chesters, Faraday Discuss. 96, 325336 (1993).
http://dx.doi.org/10.1039/fd9939600325
31.
31. K. Griffiths, W. N. Lennard, M. Iv, P. R. Norton, G. Pirug and H. P. Bonzel, Surf. Sci. 284(1–2), L389L393 (1993).
http://dx.doi.org/10.1016/0039-6028(93)90513-J
32.
32. B. E. Heyden and A. M. Bradshaw, Surf. Sci. 125(3), 787802 (1983).
http://dx.doi.org/10.1016/S0039-6028(83)80060-0
33.
33. D. R. Killelea, V. L. Campbell, N. S. Shuman, R. R. Smith, and A. L. Utz, J. Phys. Chem. C 113(48), 2061820622 (2009).
http://dx.doi.org/10.1021/jp9065339
34.
34. A. C. Luntz, J. Chem. Phys. 113(16), 69016905 (2000).
http://dx.doi.org/10.1063/1.1311280
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/5/10.1063/1.4803933
Loading
/content/aip/journal/rsi/84/5/10.1063/1.4803933
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/5/10.1063/1.4803933
2013-05-09
2014-08-21

Abstract

We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S(θ). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/5/1.4803933.html;jsessionid=15nmra8k7y2a3.x-aip-live-02?itemId=/content/aip/journal/rsi/84/5/10.1063/1.4803933&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/5/10.1063/1.4803933
10.1063/1.4803933
SEARCH_EXPAND_ITEM