1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Sensitive thermal transitions of nanoscale polymer samples using the bimetallic effect: Application to ultra-thin polythiophene
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/5/10.1063/1.4804395
1.
1. D. R. Queen and F. Hellman, Rev. Sci. Instrum. 80, 063901 (2009).
http://dx.doi.org/10.1063/1.3142463
2.
2. W. Lee, W. Fon, B. W. Axelrod, and M. L. Roukes, Proc. Natl. Acad. Sci. U.S.A. 106, 15225 (2009).
http://dx.doi.org/10.1073/pnas.0901447106
3.
3. S. L. Lai, J. Y. Guo, V. Petrova, G. Ramanath, and L. H. Allen, Phys. Rev. Lett. 77, 99 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.99
4.
4. F. Yi and D. A. La Van, Nanomed. Nanobiotechnol. 4, 31 (2012).
http://dx.doi.org/10.1002/wnan.155
5.
5. P. Swaminathan, B. G. Burke, A. E. Holness, B. Wilthan, L. Hanssen, T. P. Weihs, and D. A. LaVan, Thermochim. Acta 522, 60 (2011).
http://dx.doi.org/10.1016/j.tca.2011.03.006
6.
6. R. L. Greene, C. N. King, and R. B. Zubeck, Phys. Rev. B 6, 3297 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.3297
7.
7. J. L. Garden, H. Guillou, A. F. Lopeandia, J. Richard, J. S. Heron, G. M. Souche, F. R. Ong, B. Vianay, and O. Bourgeois, Thermochim. Acta 492, 16 (2009).
http://dx.doi.org/10.1016/j.tca.2009.02.012
8.
8. J. Lerchner, T. Maskow, and G. Wolf, Chem. Eng. Process. 47, 991 (2008).
http://dx.doi.org/10.1016/j.cep.2007.02.014
9.
9. R. K. Kummamuru, L. de la Rama, L. Hu, M. D. Vaudin, M. Y. Efremov, M. L. Green, D. A. LaVan, and L. H. Allen, Appl. Phys. Lett. 95, 181911 (2009).
http://dx.doi.org/10.1063/1.3255009
10.
10. L. P. Cook, R. E. Cavicchi, M. L. Green, C. B. Montgomery, and W. F. Egelhoff, AIP Conf. Proc. 931, 151 (2007).
http://dx.doi.org/10.1063/1.2799361
11.
11. L. Wang, B. Wang, and Q. Lin, Sens. Actuators B 134, 953 (2008).
http://dx.doi.org/10.1016/j.snb.2008.06.059
12.
12. J. Lerchner, R. Kirchner, J. Seidel, D. Waehlisch, and G. Wolf, Thermochim. Acta 415, 27 (2004).
http://dx.doi.org/10.1016/j.tca.2003.07.018
13.
13. E. Meyer, J. K. Gimzewski, Ch. Gerber, and R. R. Schlittler, in The Ultimate Limits of Fabrication and Measurement, edited by M. E. Welland and J. K. Gimzewski (Kluwer, Dordrecht, 1995), pp. 8995.
14.
14. C. E. Borroni-Bird, N. Al-Sarraf, S. Andersoon, and D. A. King, Chem. Phys. Lett. 183, 516 (1991).
http://dx.doi.org/10.1016/0009-2614(91)80168-W
15.
15. J. R. Barnes, R. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, Nature (London) 372, 79 (1994).
http://dx.doi.org/10.1038/372079a0
16.
16. N. Jung, H. Seo, D. Lee, C. Y. Ryu, and S. Jeon, Macromolecules 41, 6873 (2008).
http://dx.doi.org/10.1021/ma801539m
17.
17. A. Mader, K. Gruber, R. Castelli, B. A. Hermann, P. H. Seeberger, J. O. Radler, and M. Leisner, Nano Lett. 12, 420 (2012).
http://dx.doi.org/10.1021/nl203736u
18.
18. K. Gruber, T. Horlarcher, R. Castelli, A. Mader, P. H. Seeberger, and B. A. Hermann, ACS Nano 5, 3670 (2011).
http://dx.doi.org/10.1021/nn103626q
19.
19. A. Anne, C. Demaille, and C. Goyer, ACS Nano 3, 819 (2009).
http://dx.doi.org/10.1021/nn8007788
20.
20. G. Yoshikawa, T. Akiyama, S. Gautsch, P. Vettiger, and H. Roher, Nano Lett. 11, 1044 (2011).
http://dx.doi.org/10.1021/nl103901a
21.
21. L. Lechuga Gómez, V. Álvarez-Sanchéz, and F. J. T. de Miguel, U.S. patent 7,646,494 B2 (12 January 2007).
22.
22. F. J. Tamayo De Miguel, J. Mertens, and M. Calleja-Gómez, U.S. patent 7,978,344 B2 (12 July 2011).
23.
23. N. F. Martinez, P. M. Kosaka, J. Tamayo, J. Ramirez, O. Ahumada, J. Mertens, T. D. Hien, C. V. Rijn, and M. Calleja, Rev. Sci. Instrum. 81, 125109 (2010).
http://dx.doi.org/10.1063/1.3525090
24.
24. J. Tamayo, V. Pini, P. M. Kosaka, N. F. Martinez, O. Ahumada, and M. Calleja, Nanotechnology 23, 315501 (2012).
http://dx.doi.org/10.1088/0957-4484/23/31/315501
25.
25. R. Berger, Ch. Gerber, J. K. Ginzewski, E. Meyer, and H. J. Güntherodt, Appl. Phys. Lett. 69, 40 (1996).
http://dx.doi.org/10.1063/1.118111
26.
26. W.-H. Chu, M. Mehregany, and R. L. Mullen, J. Micromech. Microeng. 3, 4 (1993).
http://dx.doi.org/10.1088/0960-1317/3/1/002
27.
27. D. Ramos, J. Mertens, M. Calleja, and J. Tamayo, Sensors 7, 1757 (2007).
http://dx.doi.org/10.3390/s7091757
28.
28. M. Yun, N. Jung, C. Yim, and S. Jeon, Polymer 52, 4136 (2011).
http://dx.doi.org/10.1016/j.polymer.2011.06.051
29.
29. J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and Ch. Gerber, Rev. Sci. Instrum. 65, 3793 (1994).
http://dx.doi.org/10.1063/1.1144509
30.
30. K. Gimzewski, Ch. Gerber, E. Meyer, and R. R. Schlittler, Chem. Phys. Lett. 217, 589 (1994).
http://dx.doi.org/10.1016/0009-2614(93)E1419-H
31.
31. E. Armelin, A. L. Gomes, M. M. Pérez-Madrigal, J. Puiggalí, L. Franco, L. J. del Valle, A. Rodíguez-Galán, J. S. de C. Campos, N. Ferrer-Anglada, and C. Alemán, J. Mater. Chem. 22, 585 (2012).
http://dx.doi.org/10.1039/c1jm14168f
32.
32. M. M. Pérez-Madrigal, E. Armelin, L. J. del Valle, F. Estrany, and C. Alemán, Polym. Chem. 3, 979 (2012).
http://dx.doi.org/10.1039/c2py00584k
33.
33. M. Martí, G. Fabregat, D. S. Azambuja, C. Alemán, and E. Armelin, Prog. Org. Coat. 73, 321 (2012).
http://dx.doi.org/10.1016/j.porgcoat.2011.10.017
34.
34. E. Armelin, C. Alemán, J. I. Iribarren, F. Liesa, and F. Estrany, Patent Cooperation Treaty PCT/ES2010070820 (21 June 2012).
35.
35. E. Armelin, C. Alemán, J. I. Iribarren, F. Liesa, and F. Estrany, Patent Cooperation Treaty U.S. application 13/138925 (10 September 2012).
36.
36. B. Kim, L. Chen, J. Gong, and Y. Osada, Macromolecules 32, 3964 (1999).
http://dx.doi.org/10.1021/ma981848z
37.
37. A. L. Gomes, J. Casanovas, O. Bertran, J. S. de C. Campos, E. Armelin, and C. Alemán, J. Polym. Res. 18, 1509 (2011).
http://dx.doi.org/10.1007/s10965-010-9556-4
38.
38. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, J. Comput. Chem. 26, 1781 (2005).
http://dx.doi.org/10.1002/jcc.20289
39.
39. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995).
http://dx.doi.org/10.1021/ja00124a002
40.
40. J. Wang, R. M. Wolf, J. W. Caldwell, and D. A. Case, J. Comput. Chem. 15, 1157 (2004).
41.
41. P. Cieplak, W. Cornell, C. I. Bayly, and P. A. Kollman, J. Comput. Chem. 16, 1357 (1995).
http://dx.doi.org/10.1002/jcc.540161106
42.
42. J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Phys. 23, 327 (1977).
http://dx.doi.org/10.1016/0021-9991(77)90098-5
43.
43. D. Curcó and C. Alemán, J. Comput. Chem. 28, 1743 (2007).
http://dx.doi.org/10.1002/jcc.20687
44.
44. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. Dinola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).
http://dx.doi.org/10.1063/1.448118
45.
45. C. Alemán and L. Julia, J. Phys. Chem. 100, 1524 (1996).
http://dx.doi.org/10.1021/jp951592o
46.
46. C. Alemán, V. M. Domingo, L. Fajarí, L. Juliá, and A. Karpfen, J. Org. Chem. 63, 1041 (1998).
http://dx.doi.org/10.1021/jo971357x
47.
47. O. Bertran, E. Armelin, J. Torras, F. Estrany, M. Codina, and C. Alemán, Polymer 49, 1972 (2008).
http://dx.doi.org/10.1016/j.polymer.2008.02.036
48.
48. E. Armelin, O. Betran, F. Estrany, R. Salvatella, and C. Alemán, Eur. Polym. J. 45, 2211 (2009).
http://dx.doi.org/10.1016/j.eurpolymj.2009.05.024
49.
49. O. Bertran, P. Pfeiffer, J. Torras, E. Armelin, F. Estrany, and C. Alemán, Polymer 48, 6955 (2007).
http://dx.doi.org/10.1016/j.polymer.2007.09.033
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/5/10.1063/1.4804395
Loading
/content/aip/journal/rsi/84/5/10.1063/1.4804395
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/5/10.1063/1.4804395
2013-05-15
2014-07-25

Abstract

A sensitive nanocalorimetric technology based on microcantilever sensors is presented. The technology, which combines very short response times with very small sample consumption, uses the bimetallic effect to detect thermal transitions. Specifically, abrupt variations in the Young's modulus and the thermal expansion coefficient produced by temperature changes have been employed to detect thermodynamic transitions. The technology has been used to determine the glass transition of poly(3-thiophene methyl acetate), a soluble semiconducting polymer with different nanotechnological applications. The glass transition temperature determined using microcantilevers coated with ultra-thin films of mass = 10 g is 5.2 °C higher than that obtained using a conventional differential scanning calorimeter for bulk powder samples of mass = 5 × 10 g. Atomistic molecular dynamics simulations on models that represent the bulk powder and the ultra-thin films have been carried out to provide understanding and rationalization of this feature. Simulations indicate that the film-air interface plays a crucial role in films with very small thickness, affecting both the organization of the molecular chains and the response of the molecules against the temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/5/1.4804395.html;jsessionid=1a1ei9qtfi4v0.x-aip-live-03?itemId=/content/aip/journal/rsi/84/5/10.1063/1.4804395&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Sensitive thermal transitions of nanoscale polymer samples using the bimetallic effect: Application to ultra-thin polythiophene
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/5/10.1063/1.4804395
10.1063/1.4804395
SEARCH_EXPAND_ITEM