1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Data analysis for Seebeck coefficient measurements
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/6/10.1063/1.4807697
1.
1. G. S. Snyder and E. S. Toberer, Nature Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
2.
2. N. S. Hudak and G. G. Amatucci, J. Appl. Phys. 103, 101301 (2008).
http://dx.doi.org/10.1063/1.2918987
3.
3. O. Boffoué, A. Jacquot, A. Dauscher, B. Lenoir, and M. Stölzer, Rev. Sci. Instrum. 76, 053907 (2005).
http://dx.doi.org/10.1063/1.1912820
4.
4. J. Martin, T. Tritt, and C. Uher, J. Appl. Phys. 108, 121101 (2010).
http://dx.doi.org/10.1063/1.3503505
5.
5. J. de Boor, C. Stiewe, P. Ziolkowski, T. Dasgupta, G. Karpinski, E. Lenz, F. Edler, and E. Müller, “High-temperature measurement of Seebeck coefficient and electrical conductivity,” J. Electron. Mater. (published online).
http://dx.doi.org/10.1007/s11664-012-2404-z
6.
6. J. de Boor and V. Schmidt, Adv. Mater. 22, 4303 (2010).
http://dx.doi.org/10.1002/adma.201001654
7.
7. J. de Boor and V. Schmidt, Appl. Phys. Lett. 99, 022102 (2011).
http://dx.doi.org/10.1063/1.3609325
8.
8. A. T. Burkov, A. Heinrich, P. P. Konstantinov, T. Nakama, and K. Yagasaki, Meas. Sci. Technol. 12, 264 (2001).
http://dx.doi.org/10.1088/0957-0233/12/3/304
9.
9. C. Byl, D. Bérardan, and N. Dragoe, Meas. Sci. Technol. 23, 035603 (2012).
http://dx.doi.org/10.1088/0957-0233/23/3/035603
10.
10. S. Iwanaga, E. S. Toberer, A. LaLonde, and G. J. Snyder, Rev. Sci. Instrum. 82, 063905 (2011).
http://dx.doi.org/10.1063/1.3601358
11.
11. P. H. M. Böttger, E. Flage-Larsen, O. B. Karlsen, and T. G. Finstad, Rev. Sci. Instrum. 83, 025101 (2012).
http://dx.doi.org/10.1063/1.3673474
12.
12. J. Martin, Rev. Sci. Instrum. 83, 065101 (2012).
http://dx.doi.org/10.1063/1.4723872
13.
13. V. Ponnambalam, S. Lindsey, N. S. Hickman, and T. M. Tritt, Rev. Sci. Instrum. 77, 073904 (2006).
http://dx.doi.org/10.1063/1.2219734
14.
14. Z. Zhou and C. Uher, Rev. Sci. Instrum. 76, 023901 (2005).
http://dx.doi.org/10.1063/1.1835631
15.
15. See http://srdata.nist.gov/its90/main/its90_main_page.html for NIST ITS-90 Thermocouple Database.
16.
16. B. B. Iversen, J. Mater. Chem. 20, 10778 (2010).
http://dx.doi.org/10.1039/c0jm02000a
17.
17. T. Dasgupta, H. Yin, J. de Boor, C. Stiewe, B. B. Iversen, and E. Müller, “Thermal instability of β-Zn4Sb3: Insights from transport and structural measurements,” J. Electron. Mater. (published online).
http://dx.doi.org/10.1007/s11664-013-2490-6
18.
18. N. D. Lowhorn, W. Wong-Ng, Z.-Q. Lu, J. Martin, M. L. Green, J. E. Bonevich, E. L. Thomas, N. R. Dilley, and J. Sharp, J. Mater. Res. 26, 1983 (2011).
http://dx.doi.org/10.1557/jmr.2011.118
19.
19. E. Lenz, S. Haupt, F. Edler, P. Ziolkowski, and H. F. Pernau, Phys. Status Solidi C 9, 2432 (2012).
http://dx.doi.org/10.1002/pssc.201200305
20.
20. H. Wang, W. Porter, H. Böttner, J. Koenig, L. Chen, S. Bai, T. Tritt, A. Mayolet, J. Senawiratne, C. Smith, F. Harris, P. Gilbert, J. Sharp, J. Lo, H. Kleinke, and L. Kiss, J. Electron. Mater. 42, 654 (2013).
http://dx.doi.org/10.1007/s11664-012-2396-8
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/6/10.1063/1.4807697
Loading
/content/aip/journal/rsi/84/6/10.1063/1.4807697
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/6/10.1063/1.4807697
2013-06-03
2014-07-29

Abstract

The Seebeck coefficient is one of the key quantities of thermoelectric materials and routinely measured in various laboratories. There are, however, several ways to calculate the Seebeck coefficient from the raw measurement data. We compare these different ways to extract the Seebeck coefficient, evaluate the accuracy of the results, and show methods to increase this accuracy. We furthermore point out experimental and data analysis parameters that can be used to evaluate the trustworthiness of the obtained result. The shown analysis can be used to find and minimize errors in the Seebeck coefficient measurement and therefore increase the reliability of the measured material properties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/6/1.4807697.html;jsessionid=26kgp7hi3m2om.x-aip-live-06?itemId=/content/aip/journal/rsi/84/6/10.1063/1.4807697&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Data analysis for Seebeck coefficient measurements
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/6/10.1063/1.4807697
10.1063/1.4807697
SEARCH_EXPAND_ITEM