Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. S. Snyder and E. S. Toberer, Nature Mater. 7, 105 (2008).
2. N. S. Hudak and G. G. Amatucci, J. Appl. Phys. 103, 101301 (2008).
3. O. Boffoué, A. Jacquot, A. Dauscher, B. Lenoir, and M. Stölzer, Rev. Sci. Instrum. 76, 053907 (2005).
4. J. Martin, T. Tritt, and C. Uher, J. Appl. Phys. 108, 121101 (2010).
5. J. de Boor, C. Stiewe, P. Ziolkowski, T. Dasgupta, G. Karpinski, E. Lenz, F. Edler, and E. Müller, “High-temperature measurement of Seebeck coefficient and electrical conductivity,” J. Electron. Mater. (published online).
6. J. de Boor and V. Schmidt, Adv. Mater. 22, 4303 (2010).
7. J. de Boor and V. Schmidt, Appl. Phys. Lett. 99, 022102 (2011).
8. A. T. Burkov, A. Heinrich, P. P. Konstantinov, T. Nakama, and K. Yagasaki, Meas. Sci. Technol. 12, 264 (2001).
9. C. Byl, D. Bérardan, and N. Dragoe, Meas. Sci. Technol. 23, 035603 (2012).
10. S. Iwanaga, E. S. Toberer, A. LaLonde, and G. J. Snyder, Rev. Sci. Instrum. 82, 063905 (2011).
11. P. H. M. Böttger, E. Flage-Larsen, O. B. Karlsen, and T. G. Finstad, Rev. Sci. Instrum. 83, 025101 (2012).
12. J. Martin, Rev. Sci. Instrum. 83, 065101 (2012).
13. V. Ponnambalam, S. Lindsey, N. S. Hickman, and T. M. Tritt, Rev. Sci. Instrum. 77, 073904 (2006).
14. Z. Zhou and C. Uher, Rev. Sci. Instrum. 76, 023901 (2005).
15. See for NIST ITS-90 Thermocouple Database.
16. B. B. Iversen, J. Mater. Chem. 20, 10778 (2010).
17. T. Dasgupta, H. Yin, J. de Boor, C. Stiewe, B. B. Iversen, and E. Müller, “Thermal instability of β-Zn4Sb3: Insights from transport and structural measurements,” J. Electron. Mater. (published online).
18. N. D. Lowhorn, W. Wong-Ng, Z.-Q. Lu, J. Martin, M. L. Green, J. E. Bonevich, E. L. Thomas, N. R. Dilley, and J. Sharp, J. Mater. Res. 26, 1983 (2011).
19. E. Lenz, S. Haupt, F. Edler, P. Ziolkowski, and H. F. Pernau, Phys. Status Solidi C 9, 2432 (2012).
20. H. Wang, W. Porter, H. Böttner, J. Koenig, L. Chen, S. Bai, T. Tritt, A. Mayolet, J. Senawiratne, C. Smith, F. Harris, P. Gilbert, J. Sharp, J. Lo, H. Kleinke, and L. Kiss, J. Electron. Mater. 42, 654 (2013).

Data & Media loading...


Article metrics loading...



The Seebeck coefficient is one of the key quantities of thermoelectric materials and routinely measured in various laboratories. There are, however, several ways to calculate the Seebeck coefficient from the raw measurement data. We compare these different ways to extract the Seebeck coefficient, evaluate the accuracy of the results, and show methods to increase this accuracy. We furthermore point out experimental and data analysis parameters that can be used to evaluate the trustworthiness of the obtained result. The shown analysis can be used to find and minimize errors in the Seebeck coefficient measurement and therefore increase the reliability of the measured material properties.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd