1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
CO2 sensing at room temperature using carbon nanotubes coated core fiber Bragg grating
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/6/10.1063/1.4810016
1.
1. C. D. Thomas et al., “Extinction risk from climate change,” Nature 427, 145148 (2004).
http://dx.doi.org/10.1038/nature02121
2.
2. O. E. Sala et al., “Global biodiversity scenarios for the year 2100,” Science 287, 17701774 (2000).
http://dx.doi.org/10.1126/science.287.5459.1770
3.
3. J. W. Raich and W. H. Schlesinger, “The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate,” Tellus 44B(2), 8199 (1992).
http://dx.doi.org/10.1034/j.1600-0889.1992.t01-1-00001.x
4.
4. B. Serban, A. K. Sarin Kumar, S. Costea, M. Mihaila, O. Buiu, M. Brezeanu, N. Varachiu, and C. Cobianu, “Polymer-amino carbon nanotube nanocomposites for surface acoustic wave CO2 detection,” Rom. J. Inf. Sci. Technol. 12(3), 376384 (2009).
5.
5. J. W. Gardner, “A brief history of electronic noses,” Sens. Actuators B 18, 211220 (1994).
6.
6. K. Arshak, “A review of gas sensors employed in electronic nose applications,” Sens. Rev. 24, 181198 (2004).
http://dx.doi.org/10.1108/02602280410525977
7.
7. D. James et al., “Chemical sensors for electronic nose systems,” Microchim. Acta 149, 117 (2005).
http://dx.doi.org/10.1007/s00604-004-0291-6
8.
8. G. Eranna, B. C. Joshi, D. P. Runthala, and R. P. Gupta, “Oxide materials for developing of integrated gas sensors-A comprehensive review,” Crit. Rev. Solid State Mater. Sci. 29, 111188 (2004).
http://dx.doi.org/10.1080/10408430490888977
9.
9. H. Bai and G. Shi, “Gas sensors based on conducting polymers,” Sensors 7, 267307 (2007).
http://dx.doi.org/10.3390/s7030267
10.
10. Y. Zhang, X. He, J. Li, Z. Miao, and F. Huang, “Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers,” Sens. Actuators B 132, 6773 (2008).
http://dx.doi.org/10.1016/j.snb.2008.01.006
11.
11. Y. Wang and J. T. W. Yeow, “A review of carbon nanotubes-based gas sensors,” J. Sens. 2009, 124 (2009).
http://dx.doi.org/10.1155/2009/493904
12.
12. M. Endo et al., “Potential applications of carbon nanotubes,” Top. Appl. Phys. 111, 1361 (2008).
http://dx.doi.org/10.1007/978-3-540-72865-8_2
13.
13. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 43094341 (1997).
http://dx.doi.org/10.1063/1.1148392
14.
14. Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Laser Eng. 31, 297324 (1999).
http://dx.doi.org/10.1016/S0143-8166(99)00025-1
15.
15. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330, 10811084 (2010).
http://dx.doi.org/10.1126/science.1195818
16.
16. X. Shu, K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, L. Zhang, and I. Bennion, “Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings,” Appl. Phys. Lett. 83(15), 30033005 (2003).
http://dx.doi.org/10.1063/1.1618367
17.
17. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
http://dx.doi.org/10.1063/1.1904716
18.
18. F. K. Coradin, G. R. C. Possetti, R. C. Kamikawachi, M. Muller, and J. L. Fabris, “Etched fiber Bragg gratings sensors for water-ethanol mixtures: a comparative study,” J. Microwaves, Optoelectron. Electromagn. Appl. 9(2), 131143 (2010).
http://dx.doi.org/10.1590/S2179-10742010000200007
19.
19. A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
http://dx.doi.org/10.1063/1.3597623
20.
20. T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148155 (2005).
http://dx.doi.org/10.1016/j.snb.2005.01.033
21.
21. X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating,” Sens. Actuators B 127, 518524 (2007).
http://dx.doi.org/10.1016/j.snb.2007.05.007
22.
22. R. Montanini, “Wavelength-encoded optical psychrometer for relative humidity measurement,” Rev. Sci. Instrum. 78, 025103 (2007).
http://dx.doi.org/10.1063/1.2472591
23.
23. C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 53605363 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.07.045
24.
24. L. Ai, J. C. Mau, W. F. Liu, M. Y. Fu, and T. C. Chen, “Ammonia gas fiber sensor based on poly-aniline sensing film coated on superstructure fiber Bragg gratings,” Microw. Opt. Technol. Lett. 49, 30633066 (2007).
http://dx.doi.org/10.1002/mop.22948
25.
25. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 10351037 (1993).
http://dx.doi.org/10.1063/1.108786
26.
26. D. A. Pereira and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299304 (2004).
http://dx.doi.org/10.1117/1.1637903
27.
27. B. Serban, A. K. Sarin Kumar, C. Cobianu, O. Buiu, S. Costea, C. Bostan, and N. Varachiu, “Selection of gas sensing materials using the hard soft acid base theory; Application to surface acoustic wave CO2 detection,” in Proceedings of the 2010 IEEE International Semiconductor Conference (CAS) (IEEE, 2010), Vol. 1, pp. 247250.
28.
28. M. S. Nieuwenhuizen and A. J. Nederlof, “A SAW gas sensor for carbon dioxide and water. Preliminary experiments,” Sens. Actuators B 2, 97 (1990).
http://dx.doi.org/10.1016/0925-4005(90)80017-T
29.
29. K. G. Ong, K. Zeng, and C. A. Grimes, “A wireless, passive carbon nanotube-based gas sensor,” IEEE Sens. J. 2, 8288 (2002).
http://dx.doi.org/10.1109/JSEN.2002.1000247
30.
30. R. Zhou, D. Schmeisser, and W. Gopel, “Mass sensitive detection of carbon dioxide by amino group-functionalized polymers,” Sens. Actuators B 33, 188193 (1996).
http://dx.doi.org/10.1016/0925-4005(96)80096-7
31.
31. P. Lu et al., “Resolving cross sensitivity of fiber Bragg gratings with different polymeric coatings,” Appl. Phys. Lett. 92, 171112 (2008).
http://dx.doi.org/10.1063/1.2919796
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/6/10.1063/1.4810016
Loading
/content/aip/journal/rsi/84/6/10.1063/1.4810016
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/6/10.1063/1.4810016
2013-06-18
2014-07-13

Abstract

The sensing of carbon dioxide (CO) at room temperature, which has potential applications in environmental monitoring, healthcare, mining, biotechnology, food industry, etc., is a challenge for the scientific community due to the relative inertness of CO. Here, we propose a novel gas sensor based on clad-etched Fiber Bragg Grating (FBG) with polyallylamine-amino-carbon nanotube coated on the surface of the core for detecting the concentrations of CO gas at room temperature, in ppm levels over a wide range (1000 ppm–4000 ppm). The limit of detection observed in polyallylamine-amino-carbon nanotube coated core-FBG has been found to be about 75 ppm. In this approach, when CO gas molecules interact with the polyallylamine-amino-carbon nanotube coated FBG, the effective refractive index of the fiber core changes, resulting in a shift in Bragg wavelength. The experimental data show a linear response of Bragg wavelength shift for increase in concentration of CO gas. Besides being reproducible and repeatable, the technique is fast, compact, and highly sensitive.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/6/1.4810016.html;jsessionid=2vo5eq5o9h6jg.x-aip-live-06?itemId=/content/aip/journal/rsi/84/6/10.1063/1.4810016&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: CO2 sensing at room temperature using carbon nanotubes coated core fiber Bragg grating
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/6/10.1063/1.4810016
10.1063/1.4810016
SEARCH_EXPAND_ITEM