banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
A high-flux high-order harmonic source
Rent this article for
Access full text Article
1. C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent x-rays in the water window using 5-femtosecond laser pulsesScience 278, 661 (1997).
2. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336, 12871291 (2012).
3. Y. Tamaki, J. Itatani, M. Obara, and K. Midorikawa, “Highly coherent soft x-ray generation by macroscopic phase matching of high-order harmonics,” Jpn. J. Appl. Phys. 40, L1154L1156 (2001).
4. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614 (2008).
5. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163234 (2009).
6. S. L. Sorensen, O. Bjorneholm, I. Hjelte, T. Kihlgren, G. Ohrwall, S. Sundin, S. Svensson, S. Buil, D. Descamps, and A. L'Huillier, “Femtosecond pump-probe photoelectron spectroscopy of predissociative states in acetylen,” J. Chem. Phys. 112, 8038 (2000).
7. R. L. Sandberg, C. Song, P. W. Wachulak, D. A. Raymondson, A. Paul, B. Amirbekian, E. Lee, A. E. Sakdinawat, C. La-O-Vorakiat, M. C. Marconi, C. S. Menoni, M. M. Murnane, J. J. Rocca, H. C. Kapteyn, and J. Miao, “High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution,” Proc. Natl. Acad. Sci. U.S.A. 105, 2427 (2008).
8. J. Schwenke, E. Lorek, R. Rakowski, X. He, A. Kvennefors, A. Mikkelsen, P. Rudawski, C. M. Heyl, I. Maximov, S.-G. Pettersson, A. Persson, and A. L'Huillier, “Digital in-line holography on amplitude and phase objects prepared with electron beam lithography,” J. Microsc. 247, 196201 (2012).
9. G. Lambert, T. Hara, D. Garzella, T. Tanikawa, M. Labat, B. Carre, H. Kitamura, T. Shintake, M. Bougeard, S. Inoue, Y. Tanaka, P. Salieres, H. Merdji, O. Chubar, O. Gobert, K. Tahara, and M.-E. Couprie, “Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light,” Nat. Phys. 4, 296300 (2008).
10. E. P. Benis, D. Charalambidis, T. N. Kitsopoulos, G. D. Tsakiris, and P. Tzallas, “Two-photon double ionization of rare gases by a superposition of harmonics,” Phys. Rev. A 74, 051402(R) (2006).
11. K. Ishikawa and K. Midorikawa, “Two-photon ionization of He+ as a nonlinear optical effect in the soft-x-ray region,” Phys. Rev. A 65, 043405 (2002).
12. M. Ferray, A. L'Huillier, X. F. Li, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B 21, L31 (1988).
13. A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and C. K. Rhodes, “Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases,” J. Opt. Soc. Am. B 4, 595 (1987).
14. T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545 (2000).
15. E. J. Takahashi, Y. Nabekawa, and K. Midorikawa, “Low-divergence coherent soft x-ray source at 13 nm by high-order harmonics,” Appl. Phys. Lett. 84, 46 (2004).
16. T. Popmintchev, M. C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent x-ray generation,” Nat. Photonics 4, 822832 (2010).
17. E. Takahashi, Y. Nabekawa, T. Otsuka, M. Obara, and K. Midorikawa, “Generation of highly coherent submicrojoule soft x rays by high-order harmonics,” Phys. Rev. A 66, 021802(R) (2002).
18. E. Takahashi, Y. Nabekawa, and K. Midorikawa, “Generation of 10-μJ coherent extreme-ultraviolet light by use of high-order harmonics,” Opt. Lett. 27, 1920 (2002).
19. J.-F. Hergott, M. Kovacev, H. Merdji, C. Hubert, Y. Mairesse, E. Jean, P. Breger, P. Agostini, B. Carré, and P. Salières, “Extreme-ultraviolet high-order harmonic pulses in the microjoule range,” Phys. Rev. A 66, 021801(R) (2002).
20. J. Mauritsson, P. Johnsson, E. Gustafsson, A. L'Huillier, K. J. Schafer, and M. B. Gaarde, “Attosecond pulse trains generated using two color laser fields,” Phys. Rev. Lett. 97, 013001 (2006).
21. D. Shafir, H. Soifer, B. D. Bruner, M. Dagan, Y. Mairesse, S. Patchkovskii, M. Yu. Ivanov, O. Smirnova, and N. Dudovich, “Resolving the time when an electron exits a tunneling barrier,” Nature (London) 485, 343346 (2012).
22. F. Brizuela, C. M. Heyl, P. Rudawski, D. Kroon, L. Rading, J. M. Dahlström, J. Mauritsson, P. Johnsson, C. L. Arnold, and A. L'Huillier, “Efficient high-order harmonic generation boosted by below-threshold harmonics,” Sci. Rep. 3, 1410 (2013).
23. P. B. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994 (1993).
24. K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599 (1993).
25. P. Salières, A. L'Huillier, and M. Lewenstein, “Coherence control of high-order harmonics,” Phys. Rev. Lett. 74, 3776 (1995).
26. S. Kazamias, D. Douillet, F. Weihe, C. Valentin, A. Rousse, S. Sebban, G. Grillon, F. Augé, D. Hulin, and P. Balcou, “Global optimization of high harmonic generation,” Phys. Rev. Lett. 90, 193901 (2003).
27. C. M. Heyl, J. Güdde, A. L'Huillier, and U. Höfer, “High-order harmonic generation with μJ laser pulses at high repetition rates,” J. Phys. B 45, 074020 (2012).
28. E. Constant, D. Garzella, P. Breger, E. Mével, C. Dorrer, C. L. Blanc, F. Salin, and P. Agostini, “Optimizing high harmonic generation in absorbing gases: Model and experiment,” Phys. Rev. Lett. 82, 1668 (1999).
29.Attotech HB.
30. C. Lyngå, M. B. Gaarde, C. Delfin, M. Bellini, A. L'Huillier, T. W. Hänsch, and C.-G. Wahlström, “Studies of the temporal coherence of high-order harmonics,” Phys. Rev. A 60, 4823 (1999).
31. C. Erny, E. Mansten, M. Gisselbrecht, J. Schwenke, R. Rakowski, X. He, M. B. Gaarde, S. Werin, and A. L'Huillier, “Metrology of high-order harmonics for free-electron laser seeding,” New J. Phys. 13, 073035 (2011).
32. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30000 ev, Z = 1–92,” At. Data Nucl. Data Tables 54, 181342 (1993).
33. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
34. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley and Sons, 2007).
35. R. A. Bartels, A. Paul, H. Green, H. C. Kapteyn, M. M. Murnane, S. Backus, I. P. Christov, Y. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376 (2002).
36. X. He, M. Miranda, J. Schwenke, O. Guilbaud, T. Ruchon, C. Heyl, E. Georgadiou, R. Rakowski, A. Persson, M. B. Gaarde, and A. L'Huillier, “Spatial and spectral properties of the high-order harmonic emission in argon for seeding applications,” Phys. Rev. A 79, 063829 (2009).
View: Figures


Image of FIG. 1.

Click to view

FIG. 1.

Phase matching pressure in Ar as a function of ionization degree for different harmonic orders, q, and different focus geometries , blue, and , red. The central wavelength is 800 nm and the generation cell is placed at the focus of the fundamental beam.

Image of FIG. 2.

Click to view

FIG. 2.

Scaling of the phase matching pressure and the required laser pulse energy with focal length (or ) for different ionization levels in argon. The corresponding minimum laser pulse energy required is shown in red. For the simulations, the following parameters were used: beam diameter before focusing: = 10 mm, gas cell position: at the focus, central wavelength of 800 nm, harmonic order = 21. The required pulse energy was calculated assuming a peak intensity of 1.5 × 10 W/cm and a pulse length of 45 fs.

Image of FIG. 3.

Click to view

FIG. 3.

HHG setup in the 4 m focusing configuration; L - focusing lens, I - iris, M - folding mirrors, PGC - pulsed gas cell, F - aluminum filters, RM - rotating mirror, XS - XUV spectrometer, VS - VUV spectrometer, and XCCD - XUV CCD camera.

Image of FIG. 4.

Click to view

FIG. 4.

High-order harmonic spectra in argon (a) and neon (b) gas. The pulse energy per individual harmonics, shown as dots, was obtained by combining total energy measurements with the spectral response from the XUV spectrometer.

Image of FIG. 5.

Click to view

FIG. 5.

Intensity of the 21st harmonic generated in argon as a function of driving laser energy and generation gas pressure. The measurements were carried out for a gas cell placed at the laser focus for three iris sizes: (a) ϕ = 22 mm, (b) ϕ = 24 mm, and (c) ϕ = 32 mm. The values of a harmonic intensity between the measured points, shown as black dots, were interpolated.

Image of FIG. 6.

Click to view

FIG. 6.

(a) Spatial profile of the harmonic beam generated in Ar by focusing fundamental radiation with 2 m focal length lens into a 10 mm long cell, recorded with an x-ray CCD camera. The back-panel shows the cross-section of the beam (gray, dotted line), and a fitted intensity distribution (blue, dashed line), (b) Diffraction pattern created in a double-slit experiment, experimental data (blue, solid line), and fitted intensity distribution (red, dashed line).


Article metrics loading...



We develop and implement an experimental strategy for the generation of high-energy high-order harmonics (HHG) in gases for studies of nonlinear processes in the soft x-ray region. We generate high-order harmonics by focusing a high energy Ti:Sapphire laser into a gas cell filled with argon or neon. The energy per pulse is optimized by an automated control of the multiple parameters that influence the generation process. This optimization procedure allows us to obtain energies per pulse and harmonic order as high as 200 nJ in argon and 20 nJ in neon, with good spatial properties, using a loose focusing geometry ( ) and a 20 mm long medium. We also theoretically examine the macroscopic conditions for absorption-limited conversion efficiency and optimization of the HHG pulse energy for high-energy laser systems.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A high-flux high-order harmonic source