Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, “Absorption of ultra-intense laser pulses,” Phys. Rev. Lett. 69, 1383 (1992).
2. M. Sherlock, “Universal scaling of the electron distribution function in one-dimensional simulations of relativistic laser-plasma interactions,” Phys. Plamas 16, 103101 (2009).
3. M. G. Haines, M. S. Wei, F. N. Beg, and R. B. Stephens, “Hot-electron temperature and laser-light absorption in fast ignition,” Phys. Rev. Lett. 102, 045008 (2009).
4. M. H. Key, M. D. Cable, T. E. Cowan, K. G. Estabrook, B. A. Hammel, S. P. Hatchett, E. A. Henry, D. E. Hinkel, J. D. Kilkenny, J. A. Koch, W. L. Kruer, A. B. Langdon, B. F. Lasinski, R. W. Lee, B. J. MacGowan, A. MacKinnon, J. D. Moody, M. J. Moran, A. A. Offenberger, D. M. Pennington, M. D. Perry, T. J. Phillips, T. C. Sangster, M. S. Singh, M. A. Stoyer, M. Tabak, G. L. Tietbohl, M. Tsukamoto, K. Wharton, and S. C. Wilks, “Hot electron production and heating by hot electrons in fast ignitor research,” Phys. Plasmas 5, 1966 (1998).
5. R. H. H. Scott, F. Perez, J. J. Santos, C. P. Ridgers, J. R. Davies, K. L. Lancaster, S. D. Baton, P. Nicolai, R. M. G. M. Trines, A. R. Bell, S. Hulin, M. Tzoufras, S. J. Rose, and P. A. Norreys, “A study of fast electron energy transport in relativistically intense laser-plasma interactions with large density scalelengths,” Phys. Plasmas 19, 053104 (2012).
6. M. Key, K. Akli, F. Beg, M. Chen, H.-K. Chung, R. Freeman, M. Foord, J. Green, P. Gu, G. Gregori, H. Habara, S. Hatchett, D. Hey, J. Hill, J. King, R. Kodama, J. Koch, K. Lancaster, B. Lasinski, B. Langdon, A. MacKinnon, C. Murphy, P. Norreys, N. Patel, P. Patel, J. Pasley, R. Snavely, R. Stephens, C. Stoeckl, M. Tabak, W. Theobald, K. Tanaka, R. Town, S. Wilks, T. Yabuuchi, and B. Zhang, “Study of electron and proton isochoric heating for fast ignition,” J. Phys. IV 133, 371378 (2006).
7. E. L. Clark, K. Krushelnick, J. R. Davies, M. Zepf, M. Tatarakis, F. N. Beg, A. Machacek, P. A. Norreys, M. I. K. Santala, I. Watts, and A. E. Dangor, “Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids,” Phys. Rev. Lett. 84, 670673 (2000).
8. R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, and E. M. Campbell, “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 29452948 (2000).
9. A. Maksimchuk, S. Gu, K. Flippo, D. Umstadter, and V. Y. Bychenkov, “Forward ion acceleration in thin films driven by a high-intensity laser,” Phys. Rev. Lett. 84, 41084111 (2000).
10. D. Hoarty, S. James, H. Davies, C. Brown, J. Harris, C. Smith, S. Davidson, E. Kerswill, B. Crowley, and S. Rose, “Heating of buried layer targets by 1[omega] and 2[omega] pulses using the helen cpa laser,” High Energy Density Phys. 3, 115119 (2007).
11. P. K. Patel, A. J. Mackinnon, M. H. Key, T. E. Cowan, M. E. Foord, M. Allen, D. F. Price, H. Ruhl, P. T. Springer, and R. Stephens, “Isochoric heating of solid-density matter with an ultrafast proton beam,” Phys. Rev. Lett. 91, 125004 (2003).
12. F. Perez, L. Gremillet, M. Koenig, S. D. Baton, P. Audebert, M. Chahid, C. Rousseaux, M. Drouin, E. Lefebvre, T. Vinci, J. Rassuchine, T. Cowan, S. A. Gaillard, K. A. Flippo, and R. Shepherd, “Enhanced isochoric heating from fast electrons produced by high-contrast, relativistic-intensity laser pulses,” Phys. Rev. Lett. 104, 085001 (2010).
13. H. Nishimura, R. Mishra, S. Ohshima, H. Nakamura, M. Tanabe, T. Fujiwara, N. Yamamoto, S. Fujioka, D. Batani, M. Veltcheva, T. Desai, R. Jafer, T. Kawamura, Y. Sentoku, R. Mancini, P. Hakel, F. Koike, and K. Mima, “Energy transport and isochoric heating of a low-z, reduced-mass target irradiated with a high intensity laser pulse,” Phys. Plasmas 18, 022702 (2011).
14. A. Saemann, K. Eidmann, I. E. Golovkin, R. C. Mancini, E. Andersson, E. Förster, and K. Witte, “Isochoric heating of solid aluminum by ultrashort laser pulses focused on a tamped target,” Phys. Rev. Lett. 82, 48434846 (1999).
15. M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, “Ignition and high-gain with ultrapowerful lasers,” Phys. Plamas 1, 16261634 (1994).
16. R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, Y. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature (London) 412, 798802 (2001).
17. J. J. Honrubia and I. Meyer-Ter-Vehn, “Three-dimensional fast electron transport for ignition-scale inertial fusion capsules,” Nucl. Fusion 46, L25L28 (2006).
18. S. Atzeni, A. Schiavi, and J. R. Davies, “Stopping and scattering of relativistic electron beams in dense plasmas and requirements for fast ignition,” Plasma Phys. Controlled Fusion 51, 015016 (2009).
19. R. G. Evans, “Modelling electron transport for fast ignition,” Plasma Phys. Controlled Fusion 49, B87B93 (2007).
20. C. Deutsch, H. Furukawa, K. Mima, M. Murakami, and K. Nishihara, “Interaction physics of the fast ignitor concept,” Phys. Rev. Lett. 77, 24832486 (1996).
21. G. Malka and J. L. Miquel, “Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target,” Phys. Rev. Lett. 77, 7578 (1996).
22. K. A. Tanaka, R. Kodama, H. Fujita, M. Heya, N. Izumi, Y. Kato, Y. Kitagawa, K. Mima, N. Miyanaga, T. Norimatsu, A. Pukhov, A. Sunahara, K. Takahashi, M. Allen, H. Habara, T. Iwatani, T. Matusita, T. Miyakosi, M. Mori, H. Setoguchi, T. Sonomoto, M. Tanpo, S. Tohyama, H. Azuma, T. Kawasaki, T. Komeno, O. Maekawa, S. Matsuo, T. Shozaki, K. Suzuki, H. Yoshida, T. Yamanaka, Y. Sentoku, F. Weber, J. T. W. Barbee, and L. DaSilva, “Studies of ultra-intense laser plasma interactions for fast ignition,” Phys. Plasmas 7, 20142022 (2000).
23. M. A. Stoyer, T. C. Sangster, E. A. Henry, M. D. Cable, T. E. Cowan, S. P. Hatchett, M. Key, M. J. Moran, D. M. Pennington, M. D. Perry, T. W. Phillips, M. S. Singh, R. A. Snavely, M. Tabak, and S. C. Wilks, “Nuclear diagnostics for petawatt experiments (invited),” Rev. Sci. Instrum. 72, 767 (2001).
24. F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser-solid interactions up to 1e19 w/cm2,” Phys. Plamas 4, 447457 (1997).
25. C. D. Chen, J. A. King, M. H. Key, K. U. Akli, F. N. Beg, H. Chen, R. R. Freeman, A. Link, A. J. Mackinnon, A. G. MacPhee, P. K. Patel, M. Porkolab, R. B. Stephens, and L. D. V. Woerkom, “A bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters,” Rev. Sci. Instrum. 79, 10E305 (2008).
26. C. Courtois, A. C. L. Fontaine, O. Landoas, G. Lidove, V. Meot, P. Morel, R. Nuter, E. Lefebvre, A. Boscheron, J. Grenier, M. M. Aleonard, M. Gerbaux, F. Gobet, F. Hannachi, G. Malka, J. N. Scheurer, and M. Tarisien, “Effect of plasma density scale length on the properties of bremsstrahlung x-ray sources created by picosecond laser pulses,” Phys. Plamas 16, 013105 (2009).
27. S. P. Hatchett, C. G. Brown, T. E. Cowan, E. A. Henry, J. S. Johnson, M. H. Key, J. A. Koch, A. B. Langdon, B. F. Lasinski, R. W. Lee, A. J. Mackinnon, D. M. Pennington, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. S. Singh, R. A. Snavely, M. A. Stoyer, S. C. Wilks, and K. Yasuike, “Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets,” Phys. Plasmas 7, 20762082 (2000).
28. K. Yasuike, M. H. Key, S. P. Hatchett, R. A. Snavely, and K. B. Wharton, “Hot electron diagnostic in a solid laser target by k-shell lines measurement from ultraintense laser-plasma interactions,” Rev. Sci. Instrum. 72, 1236 (2001).
29. S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, “Energetic proton generation in ultra-intense laser–solid interactions,” Phys. Plamas 8, 542549 (2001).
30. J. A. Halbleib, R. P. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer, and M. J. Berger, Sandia National Laboratories Technical Report No. SAND91-1634, Its version 3.0: The Integrated Tiger Series (Sandia National Laboratories, 1992).
31. D. Pelowitz, MCNPX User's Manual Version 2.6.0, Los Alamos National Laboratory, 2008.
32. S. C. Wilks and W. L. Kruer, “Absorption of ultrashort laser pulses by solid targets and overdense plasmas,” IEEE J. Quantum Electron. 33, 19541968 (1997).
33. A. L. Meadowcroft, C. D. Bentley, and E. N. Stott, “Evaluation of the sensitivity and fading characteristics of an image plate system for x-ray diagnostics,” Rev. Sci. Instrum. 79, 113102 (2008).
34. R. H. H. Scott, “Fast electron transport studies for fast ignition inertial confinement fusion,” Ph.D. thesis (Imperial College London, 2011).
35. M. I. K. Santala, M. Zepf, I. Watts, F. N. Beg, E. Clark, M. Tatarakis, K. Krushelnick, A. E. Dangor, T. McCanny, I. Spencer, R. P. Singhal, K. W. D. Ledingham, S. C. Wilks, A. C. Machacek, J. S. Wark, R. Allott, R. J. Clarke, and P. A. Norreys, “Effect of the plasma density scale length on the direction of fast electrons in relativistic laser-solid interactions,” Phys. Rev. Lett. 84, 1459 (2000).

Data & Media loading...


Article metrics loading...



A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically intense laser-solid interactions is described. The Monte Carlo techniques used to extract the fast electron spectrum and laser energy absorbed into forward-going fast electrons are detailed. A relativistically intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data were interpreted using the 3-spatial-dimension Monte Carlo code [D. Pelowitz, MCNPX User's Manual Version 2.6.0, Los Alamos National Laboratory, 2008], and the fast electron temperature found to be 125 keV.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd