1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/8/10.1063/1.4816332
1.
1. S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, “Absorption of ultra-intense laser pulses,” Phys. Rev. Lett. 69, 1383 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.1383
2.
2. M. Sherlock, “Universal scaling of the electron distribution function in one-dimensional simulations of relativistic laser-plasma interactions,” Phys. Plamas 16, 103101 (2009).
http://dx.doi.org/10.1063/1.3240341
3.
3. M. G. Haines, M. S. Wei, F. N. Beg, and R. B. Stephens, “Hot-electron temperature and laser-light absorption in fast ignition,” Phys. Rev. Lett. 102, 045008 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.045008
4.
4. M. H. Key, M. D. Cable, T. E. Cowan, K. G. Estabrook, B. A. Hammel, S. P. Hatchett, E. A. Henry, D. E. Hinkel, J. D. Kilkenny, J. A. Koch, W. L. Kruer, A. B. Langdon, B. F. Lasinski, R. W. Lee, B. J. MacGowan, A. MacKinnon, J. D. Moody, M. J. Moran, A. A. Offenberger, D. M. Pennington, M. D. Perry, T. J. Phillips, T. C. Sangster, M. S. Singh, M. A. Stoyer, M. Tabak, G. L. Tietbohl, M. Tsukamoto, K. Wharton, and S. C. Wilks, “Hot electron production and heating by hot electrons in fast ignitor research,” Phys. Plasmas 5, 1966 (1998).
http://dx.doi.org/10.1063/1.872867
5.
5. R. H. H. Scott, F. Perez, J. J. Santos, C. P. Ridgers, J. R. Davies, K. L. Lancaster, S. D. Baton, P. Nicolai, R. M. G. M. Trines, A. R. Bell, S. Hulin, M. Tzoufras, S. J. Rose, and P. A. Norreys, “A study of fast electron energy transport in relativistically intense laser-plasma interactions with large density scalelengths,” Phys. Plasmas 19, 053104 (2012).
http://dx.doi.org/10.1063/1.4714615
6.
6. M. Key, K. Akli, F. Beg, M. Chen, H.-K. Chung, R. Freeman, M. Foord, J. Green, P. Gu, G. Gregori, H. Habara, S. Hatchett, D. Hey, J. Hill, J. King, R. Kodama, J. Koch, K. Lancaster, B. Lasinski, B. Langdon, A. MacKinnon, C. Murphy, P. Norreys, N. Patel, P. Patel, J. Pasley, R. Snavely, R. Stephens, C. Stoeckl, M. Tabak, W. Theobald, K. Tanaka, R. Town, S. Wilks, T. Yabuuchi, and B. Zhang, “Study of electron and proton isochoric heating for fast ignition,” J. Phys. IV 133, 371378 (2006).
7.
7. E. L. Clark, K. Krushelnick, J. R. Davies, M. Zepf, M. Tatarakis, F. N. Beg, A. Machacek, P. A. Norreys, M. I. K. Santala, I. Watts, and A. E. Dangor, “Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids,” Phys. Rev. Lett. 84, 670673 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.670
8.
8. R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, and E. M. Campbell, “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 29452948 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.2945
9.
9. A. Maksimchuk, S. Gu, K. Flippo, D. Umstadter, and V. Y. Bychenkov, “Forward ion acceleration in thin films driven by a high-intensity laser,” Phys. Rev. Lett. 84, 41084111 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4108
10.
10. D. Hoarty, S. James, H. Davies, C. Brown, J. Harris, C. Smith, S. Davidson, E. Kerswill, B. Crowley, and S. Rose, “Heating of buried layer targets by 1[omega] and 2[omega] pulses using the helen cpa laser,” High Energy Density Phys. 3, 115119 (2007).
http://dx.doi.org/10.1016/j.hedp.2007.02.007
11.
11. P. K. Patel, A. J. Mackinnon, M. H. Key, T. E. Cowan, M. E. Foord, M. Allen, D. F. Price, H. Ruhl, P. T. Springer, and R. Stephens, “Isochoric heating of solid-density matter with an ultrafast proton beam,” Phys. Rev. Lett. 91, 125004 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.125004
12.
12. F. Perez, L. Gremillet, M. Koenig, S. D. Baton, P. Audebert, M. Chahid, C. Rousseaux, M. Drouin, E. Lefebvre, T. Vinci, J. Rassuchine, T. Cowan, S. A. Gaillard, K. A. Flippo, and R. Shepherd, “Enhanced isochoric heating from fast electrons produced by high-contrast, relativistic-intensity laser pulses,” Phys. Rev. Lett. 104, 085001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.085001
13.
13. H. Nishimura, R. Mishra, S. Ohshima, H. Nakamura, M. Tanabe, T. Fujiwara, N. Yamamoto, S. Fujioka, D. Batani, M. Veltcheva, T. Desai, R. Jafer, T. Kawamura, Y. Sentoku, R. Mancini, P. Hakel, F. Koike, and K. Mima, “Energy transport and isochoric heating of a low-z, reduced-mass target irradiated with a high intensity laser pulse,” Phys. Plasmas 18, 022702 (2011).
http://dx.doi.org/10.1063/1.3551591
14.
14. A. Saemann, K. Eidmann, I. E. Golovkin, R. C. Mancini, E. Andersson, E. Förster, and K. Witte, “Isochoric heating of solid aluminum by ultrashort laser pulses focused on a tamped target,” Phys. Rev. Lett. 82, 48434846 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4843
15.
15. M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, “Ignition and high-gain with ultrapowerful lasers,” Phys. Plamas 1, 16261634 (1994).
http://dx.doi.org/10.1063/1.870664
16.
16. R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, Y. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature (London) 412, 798802 (2001).
http://dx.doi.org/10.1038/35090525
17.
17. J. J. Honrubia and I. Meyer-Ter-Vehn, “Three-dimensional fast electron transport for ignition-scale inertial fusion capsules,” Nucl. Fusion 46, L25L28 (2006).
http://dx.doi.org/10.1088/0029-5515/46/11/L02
18.
18. S. Atzeni, A. Schiavi, and J. R. Davies, “Stopping and scattering of relativistic electron beams in dense plasmas and requirements for fast ignition,” Plasma Phys. Controlled Fusion 51, 015016 (2009).
http://dx.doi.org/10.1088/0741-3335/51/1/015016
19.
19. R. G. Evans, “Modelling electron transport for fast ignition,” Plasma Phys. Controlled Fusion 49, B87B93 (2007).
http://dx.doi.org/10.1088/0741-3335/49/12B/S07
20.
20. C. Deutsch, H. Furukawa, K. Mima, M. Murakami, and K. Nishihara, “Interaction physics of the fast ignitor concept,” Phys. Rev. Lett. 77, 24832486 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.2483
21.
21. G. Malka and J. L. Miquel, “Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target,” Phys. Rev. Lett. 77, 7578 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.75
22.
22. K. A. Tanaka, R. Kodama, H. Fujita, M. Heya, N. Izumi, Y. Kato, Y. Kitagawa, K. Mima, N. Miyanaga, T. Norimatsu, A. Pukhov, A. Sunahara, K. Takahashi, M. Allen, H. Habara, T. Iwatani, T. Matusita, T. Miyakosi, M. Mori, H. Setoguchi, T. Sonomoto, M. Tanpo, S. Tohyama, H. Azuma, T. Kawasaki, T. Komeno, O. Maekawa, S. Matsuo, T. Shozaki, K. Suzuki, H. Yoshida, T. Yamanaka, Y. Sentoku, F. Weber, J. T. W. Barbee, and L. DaSilva, “Studies of ultra-intense laser plasma interactions for fast ignition,” Phys. Plasmas 7, 20142022 (2000).
http://dx.doi.org/10.1063/1.874023
23.
23. M. A. Stoyer, T. C. Sangster, E. A. Henry, M. D. Cable, T. E. Cowan, S. P. Hatchett, M. Key, M. J. Moran, D. M. Pennington, M. D. Perry, T. W. Phillips, M. S. Singh, R. A. Snavely, M. Tabak, and S. C. Wilks, “Nuclear diagnostics for petawatt experiments (invited),” Rev. Sci. Instrum. 72, 767 (2001).
http://dx.doi.org/10.1063/1.1319355
24.
24. F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser-solid interactions up to 1e19 w/cm2,” Phys. Plamas 4, 447457 (1997).
http://dx.doi.org/10.1063/1.872103
25.
25. C. D. Chen, J. A. King, M. H. Key, K. U. Akli, F. N. Beg, H. Chen, R. R. Freeman, A. Link, A. J. Mackinnon, A. G. MacPhee, P. K. Patel, M. Porkolab, R. B. Stephens, and L. D. V. Woerkom, “A bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters,” Rev. Sci. Instrum. 79, 10E305 (2008).
http://dx.doi.org/10.1063/1.2964231
26.
26. C. Courtois, A. C. L. Fontaine, O. Landoas, G. Lidove, V. Meot, P. Morel, R. Nuter, E. Lefebvre, A. Boscheron, J. Grenier, M. M. Aleonard, M. Gerbaux, F. Gobet, F. Hannachi, G. Malka, J. N. Scheurer, and M. Tarisien, “Effect of plasma density scale length on the properties of bremsstrahlung x-ray sources created by picosecond laser pulses,” Phys. Plamas 16, 013105 (2009).
http://dx.doi.org/10.1063/1.3067825
27.
27. S. P. Hatchett, C. G. Brown, T. E. Cowan, E. A. Henry, J. S. Johnson, M. H. Key, J. A. Koch, A. B. Langdon, B. F. Lasinski, R. W. Lee, A. J. Mackinnon, D. M. Pennington, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. S. Singh, R. A. Snavely, M. A. Stoyer, S. C. Wilks, and K. Yasuike, “Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets,” Phys. Plasmas 7, 20762082 (2000).
http://dx.doi.org/10.1063/1.874030
28.
28. K. Yasuike, M. H. Key, S. P. Hatchett, R. A. Snavely, and K. B. Wharton, “Hot electron diagnostic in a solid laser target by k-shell lines measurement from ultraintense laser-plasma interactions,” Rev. Sci. Instrum. 72, 1236 (2001).
http://dx.doi.org/10.1063/1.1319373
29.
29. S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, “Energetic proton generation in ultra-intense laser–solid interactions,” Phys. Plamas 8, 542549 (2001).
http://dx.doi.org/10.1063/1.1333697
30.
30. J. A. Halbleib, R. P. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer, and M. J. Berger, Sandia National Laboratories Technical Report No. SAND91-1634, Its version 3.0: The Integrated Tiger Series (Sandia National Laboratories, 1992).
31.
31. D. Pelowitz, MCNPX User's Manual Version 2.6.0, Los Alamos National Laboratory, 2008.
32.
32. S. C. Wilks and W. L. Kruer, “Absorption of ultrashort laser pulses by solid targets and overdense plasmas,” IEEE J. Quantum Electron. 33, 19541968 (1997).
http://dx.doi.org/10.1109/3.641310
33.
33. A. L. Meadowcroft, C. D. Bentley, and E. N. Stott, “Evaluation of the sensitivity and fading characteristics of an image plate system for x-ray diagnostics,” Rev. Sci. Instrum. 79, 113102 (2008).
http://dx.doi.org/10.1063/1.3013123
34.
34. R. H. H. Scott, “Fast electron transport studies for fast ignition inertial confinement fusion,” Ph.D. thesis (Imperial College London, 2011).
35.
35. M. I. K. Santala, M. Zepf, I. Watts, F. N. Beg, E. Clark, M. Tatarakis, K. Krushelnick, A. E. Dangor, T. McCanny, I. Spencer, R. P. Singhal, K. W. D. Ledingham, S. C. Wilks, A. C. Machacek, J. S. Wark, R. Allott, R. J. Clarke, and P. A. Norreys, “Effect of the plasma density scale length on the direction of fast electrons in relativistic laser-solid interactions,” Phys. Rev. Lett. 84, 1459 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.1459
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/8/10.1063/1.4816332
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Reaction cross-sections with respect to incident photon energy for Pb, source XCOM, NIST. Photonuclear interactions are not shown but are extremely small for Pb for photon energies <10 MeV.

Image of FIG. 2.

Click to view

FIG. 2.

The incident bremsstrahlung photons (blue arrows) propagate through the filter array, creating an image on the region of image plate behind the filters, this image contains convolved information about the spectral distribution of the bremsstrahlung photons. The 25 filters create 25 energy bins.

Image of FIG. 3.

Click to view

FIG. 3.

Energy deposition within the active phosphor layer of the image plate as a function of photon energy and Pb filter thickness, as modelled with . Each line represents a different thickness of Pb filtering, the thicknesses shown are those which were eventually used on the final design. The relative errors are not shown for clarity, but it can be seen from the erratic nature of the curves that the relative error is higher when the photon energies are lowest and the filters thicker. The response curves indicate the detector will be able to distinguish between photons of energy ⩽2−3 MeV.

Image of FIG. 4.

Click to view

FIG. 4.

(Top) Schematic diagram of the detector. Note that the cells within the vacuum (cell walls are depicted by the black lines) are not part of the detector geometry but were used for variance reduction population control techniques. From second top to bottom the images depict relative spectrally binned photon density, the photon energy bins are: 1–10 keV, 10–100 keV, 100–300 keV, 300 keV–1 MeV. For this simplified design run, the target is placed artificially close to the detector, electrons are injected into the target from the left. The bremsstrahlung photon flux shown was generated using an exponential energy spectrum of 0.5 MeV slope temperature.

Image of FIG. 5.

Click to view

FIG. 5.

The spatial distribution of the normalized photon density per source electron within one planar slice through the filters in various spectral bins. (From top to bottom) photon flux 1–500 keV, 500–600 keV, 600 keV–1 MeV, 1–10 MeV, 10–100 MeV, 1 keV–100 MeV (all the photons in the problem). In this simplified run a photon source of uniform photon energy probability up to 100 MeV with zero divergence was injected just before the entrance to the filters. Photons enter from the left into a vacuum, the Pb filters are outlined in red in the upper image.

Image of FIG. 6.

Click to view

FIG. 6.

Energy deposition within the phosphor layer of the image plate by all photons, as modelled with . The filter thickness increases monotonically going from bottom to top in each column, the filters in the columns to the left are thinner than those on the right. (Left) High resolution image of energy deposition, black lines depict the layout of the 25 filters. (Right) Integrating the signal over the spatial region corresponding to one filter yields a clear signal. The filter structure is visible in both the high and low resolution images.

Image of FIG. 7.

Click to view

FIG. 7.

The 3D model with 3 detectors positioned as per the experiment described in Sec. V .

Image of FIG. 8.

Click to view

FIG. 8.

The experimental setup.

Image of FIG. 9.

Click to view

FIG. 9.

(a) and (b) show the same data plotted on linear and log scales. The data are compared to the modelled detector response for various initial relativistic Maxwellian electron temperatures, each color represents a different initial assumed starting temperature. The experimental data fall in between 100 keV and 200 keV, and is best fit by 125 keV (not shown). The experimental data are the mean PSL value within each “region” of the image plate, a region exactly corresponds to the shadow cast by one of the filters onto the image plate, likewise the value is the mean energy deposition within the same location and area of the modelled image plate's phosphor layer. The lines shown are simply meant to guide the reader's eye.

Image of FIG. 10.

Click to view

FIG. 10.

(a) The modelled angular distribution of bremsstrahlung flux of all energies. The target is at the bottom left of the image, while the lead shielding of the three detectors is visible as the white regions (low photon flux) towards the top and right. (b) The modelled flux spectra measured at the entrance to the three bremsstrahlung detectors (scaled to account for the small differences in the detector distances from the target) shows very little spectral variation with angle.

Loading

Article metrics loading...

/content/aip/journal/rsi/84/8/10.1063/1.4816332
2013-08-09
2014-04-24

Abstract

A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically intense laser-solid interactions is described. The Monte Carlo techniques used to extract the fast electron spectrum and laser energy absorbed into forward-going fast electrons are detailed. A relativistically intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data were interpreted using the 3-spatial-dimension Monte Carlo code [D. Pelowitz, MCNPX User's Manual Version 2.6.0, Los Alamos National Laboratory, 2008], and the fast electron temperature found to be 125 keV.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/8/1.4816332.html;jsessionid=317ggj3tfhc43.x-aip-live-02?itemId=/content/aip/journal/rsi/84/8/10.1063/1.4816332&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/8/10.1063/1.4816332
10.1063/1.4816332
SEARCH_EXPAND_ITEM