1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: Low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for a non-invasive monitoring of glucose in the interstitial fluid
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/84/8/10.1063/1.4816723
1.
1. C. Haisch, Meas. Sci. Technol. 23, 012001 (2012).
http://dx.doi.org/10.1088/0957-0233/23/1/012001
2.
2. Z. Bozóki, A. Pogány, and G. Szabó, Appl. Spectrosc. Rev. 46, 137 (2011).
http://dx.doi.org/10.1080/05704928.2010.520178
3.
3. D. V. Bageshwar, A. S. Pawar, V. V. Khanvilkar, and V. J. Kadam, Eur. J. Anal. Chem. 5, 187203 (2010).
4.
4. J. Li, W. Chen, and B. Yu, Appl. Spectrosc. Rev. 46, 440471 (2011).
http://dx.doi.org/10.1080/05704928.2011.570835
5.
5. A. Rosencwaig, Adv. Electron. Electron Phys. 46, 207311 (1978).
http://dx.doi.org/10.1016/S0065-2539(08)60413-8
6.
6. A. Roth, F. Dornuf, O. Klein, D. Schneditz, H. Hafner-Gießauf, and W. Mäntele, Anal. Bioanal. Chem. 403, 391399 (2012).
http://dx.doi.org/10.1007/s00216-012-5880-3
7.
7. C. Laugel, N. Yagoubi, and A. Baillet, Chem. Phys. Lipids 135, 5568 (2005).
http://dx.doi.org/10.1016/j.chemphyslip.2005.02.001
8.
8. P. Garidel, Phys. Chem. Chem. Phys. 4, 56715677 (2002).
http://dx.doi.org/10.1039/b207478h
9.
9. H. M. Heise, U. Damm, M. Bodenlenz, V. R. Kondepati, G. Köhler, and M. Ellmerer, J. Biomed. Opt. 12, 024004102400412 (2007).
http://dx.doi.org/10.1117/1.2714907
10.
10. G. B. Christison and H. A. MacKenzie, Med. Biol. Eng. Comput. 31, 284290 (1993).
http://dx.doi.org/10.1007/BF02458048
11.
11. H. Von Lilienfeld-Toal, M. Weidenmüller, A. Xhelaj, and W. Mäntele, Vibr. Spectrosc. 38, 209215 (2005).
http://dx.doi.org/10.1016/j.vibspec.2005.02.025
12.
12. N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, Diabetic Med. 26, 197210 (2009).
http://dx.doi.org/10.1111/j.1464-5491.2008.02642.x
13.
13. M. Pleitez, H. von Lilienfeld-Toal, and W. Mäntele, Spectrochim. Acta, Part A 85, 6165 (2011).
http://dx.doi.org/10.1016/j.saa.2011.09.007
14.
14. M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfel-Toal, and W. Mantele, Anal. Chem. 85, 10131020 (2013).
http://dx.doi.org/10.1021/ac302841f
15.
15. G. Voskanyan, D. B. Keenan, J. J. Mastrototaro, and G. M. Steil, J. Diabetes Sci. Technol. 1, 639644 (2007).
16.
16. S. Mitragotri, M. Coleman, J. Kost, and R. Langer, J. Appl. Physiol. 89, 961966 (2000).
17.
17. Z. Zhao, Pulsed Photoacoustic Techniques and Glucose Determination in Human Blood and Tissue (University of Oulu, 2002).
18.
18. J. Kottmann, J. M. Rey, and M. W. Sigrist, Rev. Sci. Instrum. 82, 084903 (2011).
http://dx.doi.org/10.1063/1.3622154
19.
19. J. Kottmann, J. M. Rey, J. Luginbühl, E. Reichmann, and M. W. Sigrist, Biomed. Opt. Express 3, 667 (2012).
http://dx.doi.org/10.1364/BOE.3.000667
20.
20. J. Kottmann, U. Grob, J. M. Rey, and M. W. Sigrist, Sensors 13, 535549 (2013).
http://dx.doi.org/10.3390/s130100535
21.
21. A. Miklós and A. Lörincz, Appl. Phys. B 48, 213218 (1989).
http://dx.doi.org/10.1007/BF00694347
22.
22. G. Z. Angeli, A. M. Solyom, A. Miklós, and D. D. Bicanic, Anal. Chem. 64, 155158 (1992).
http://dx.doi.org/10.1021/ac00026a012
23.
23. K. H. Michaelian, Photoacoustic Infrared Spectroscopy (Wiley-Interscience, Hoboken, 2003).
24.
24. M. Dehghany and K. H. Michaelian, Rev. Sci. Instrum. 83, 064901 (2012).
http://dx.doi.org/10.1063/1.4727877
25.
25. G. Hoşafçi, O. Klein, G. Oremek, and W. Mäntele, Anal. Bioanal. Chem. 387, 18151822 (2007).
http://dx.doi.org/10.1007/s00216-006-0841-3
26.
26. T. Naes, T. Isaksson, T. Fearn, and T. Davies, A User-friendly Guide to Multivariative Calibration and Classification (NIR Publications, Chichester, 2004), p. 344.
27.
27. R. G. Brereton, Applied Chemometrics for Scientists (John Wiley & Sons, Chichester, 2007), p. 379.
28.
28. B. Baumann, B. Kost, H. Groninga, and M. Wolff, Rev. Sci. Instrum. 77, 044901 (2006).
http://dx.doi.org/10.1063/1.2186808
29.
29. B. Baumann, M. Wolff, B. Kost, and H. Groninga, Appl. Opt. 46, 1120 (2007).
http://dx.doi.org/10.1364/AO.46.001120
30.
30. M. Wolff, B. Kost, and B. Baumann, Int. J. Thermophys. 33, 1953 (2012).
http://dx.doi.org/10.1007/s10765-012-1257-2
31.
31. A. Rosencwaig, J. Appl. Phys. 47, 64 (1976).
http://dx.doi.org/10.1063/1.322296
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/8/10.1063/1.4816723
Loading
/content/aip/journal/rsi/84/8/10.1063/1.4816723
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/84/8/10.1063/1.4816723
2013-08-01
2015-01-28

Abstract

The application of a novel open, windowless cell for the photoacoustic infrared spectroscopy of human skin is described. This windowless cavity is tuned for optimum performance in the ultrasound range between 50 and 60 kHz. In combination with an external cavity tunable quantum cascade laser emitting in the range from ∼1000 cm to 1245 cm, this approach leads to high signal-to-noise-ratio (SNR) for mid-infrared spectra of human skin. This opens the possibility to measure the absorption spectrum of human epidermis in the mid-infrared region at high SNR in a few (∼5) seconds. Rapid measurement of skin spectra greatly reduces artifacts arising from movements. As compared to closed resonance cells, the windowless cell exhibits the advantage that the influence of air pressure variations, temperature changes, and air humidity buildup that are caused by the contact of the cell to the skin surface can be minimized. We demonstrate here that this approach can be used for continuous and non-invasive monitoring of the glucose level in human epidermis, and thus may form the basis for a non-invasive monitoring of the glucose level for diabetes patients.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/84/8/1.4816723.html;jsessionid=394carqwrwi4h.x-aip-live-03?itemId=/content/aip/journal/rsi/84/8/10.1063/1.4816723&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: Low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for a non-invasive monitoring of glucose in the interstitial fluid
http://aip.metastore.ingenta.com/content/aip/journal/rsi/84/8/10.1063/1.4816723
10.1063/1.4816723
SEARCH_EXPAND_ITEM