Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/85/1/10.1063/1.4862046
1.
1. W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet, and M. Greiner, Science 329, 547550 (2010).
http://dx.doi.org/10.1126/science.1192368
2.
2. J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, Nature (London) 467, 6872 (2010).
http://dx.doi.org/10.1038/nature09378
3.
3. S. Fölling, F. Gerbier, A. Widera, O. Mandel, T. Gericke, and I. Bloch, Nature (London) 434, 481484 (2005).
http://dx.doi.org/10.1038/nature03500
4.
4. C.-L. Hung, X. Zhang, L.-C. Ha, S.-K. Tung, N. Gemelke, and C. Chin, New J. Phys. 13, 075019 (2011).
http://dx.doi.org/10.1088/1367-2630/13/7/075019
5.
5. S. R. Granade, M. E. Gehm, K. M. O'Hara, and J. E. Thomas, Phys. Rev. Lett. 88, 120405 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.120405
6.
6. C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Nature (London) 424, 47 (2003).
http://dx.doi.org/10.1038/nature01738
7.
7. M. Greiner, O. Mandel, T. Esslinger, T. Hänsch, and I. Bloch, Nature (London) 415, 39 (2002).
http://dx.doi.org/10.1038/415039a
8.
8. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995).
http://dx.doi.org/10.1126/science.269.5221.198
9.
9. K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.3969
10.
10. J.-Y. Choi, S. W. Seo, W. J. Kwon, and Y.-I. Shin, Phys. Rev. Lett. 109, 125301 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.125301
11.
11. S. W. Seo, J.-Y. Choi, and Y.-I. Shin, preprint arXiv:1305.4689v2.
12.
12. T. Langen, Phys. Rev. Lett. 111, 159601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.159601
13.
13. S. De, D. L. Campbell, R. M. Price, A. Putra, B. M. Anderson, and I. B. Spielman, preprint arXiv:1211.3127v2.
14.
14. W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn, in Proceedings of the International School of Physics ‘Enrico Fermi' Course CXL (IOS Press, Amsterdam, 1999), pp. 67176.
15.
15. L. Novotny and B. Hecht, Principle of Nano-Optics, 1st ed. (Cambridge University Press, 2006).
16.
16. J. A. Fleck Jr., Prog. Electromagn. Res. 11, 103 (1995).
17.
17. A. Korpel, K. Lonngren, P. P. Banerjee, H. K. Sim, and M. R. Chatterjee, J. Opt. Soc. Am. B 3, 885 (1986).
http://dx.doi.org/10.1364/JOSAB.3.000885
18.
18. M. D. Feit and J. J. A. Fleck, Appl. Opt. 17, 3990 (1978).
http://dx.doi.org/10.1364/AO.17.003990
19.
19. G. Reinaudi, T. Lahaye, Z. Wang, and D. Guery-Odelin, Opt. Lett. 32, 3143 (2007).
http://dx.doi.org/10.1364/OL.32.003143
20.
20. S. Inoue and R. Oldenbourg, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995).
21.
21. S. Dettmer, D. Hellweg, P. Ryytty, J. J. Arlt, W. Ertmer, K. Sengstock, D. S. Petrov, G. V. Shlyapnikov, H. Kreutzmann, L. Santos et al., Phys. Rev. Lett. 87, 160406 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.160406
22.
22.Moreover, the gradient term ∇ln ε(r) in Eq. (1) cannot be safely neglected for systems where |χ(r)| is large or sufficiently rapidly varying, although this would generally imply a breakdown of the paraxial approximation as well.
23.
23.A dilute regime, with density , can be achieved by letting the atomic cloud to ballistically expand.
24.
24.In our SSFM simulation of light traversing this medium, we used a Δz = 1 μm step size.
25.
25.The Wiener-Khincin theorem states that the spectral decomposition of the autocorrelation function is equal to the power spectral density.
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/1/10.1063/1.4862046
Loading
/content/aip/journal/rsi/85/1/10.1063/1.4862046
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/85/1/10.1063/1.4862046
2014-01-23
2016-09-26

Abstract

Resonant absorption imaging is a common technique for detecting the two-dimensional column density of ultracold atom systems. In many cases, the system's thickness along the imaging direction greatly exceeds the imaging system's depth of field, making the identification of the optimally focused configuration difficult. Here we describe a systematic technique for bringing Bose-Einstein condensates (BEC) and other cold-atom systems into an optimal focus even when the ratio of the thickness to the depth of field is large: a factor of 8 in this demonstration with a BEC. This technique relies on defocus-induced artifacts in the Fourier-transformed density-density correlation function (the power spectral density, PSD). The spatial frequency at which these artifacts first appear in the PSD is maximized on focus; the focusing process therefore both identifies and maximizes the range of spatial frequencies over which the PSD is uncontaminated by finite-thickness effects.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/85/1/1.4862046.html;jsessionid=HHcnpfve02JBd4RJqqXIhuxc.x-aip-live-06?itemId=/content/aip/journal/rsi/85/1/10.1063/1.4862046&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/85/1/10.1063/1.4862046&pageURL=http://scitation.aip.org/content/aip/journal/rsi/85/1/10.1063/1.4862046'
Right1,Right2,Right3,