Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/85/1/10.1063/1.4862199
1.
1. B. Lange, AIAA J. 2(9), 15901606 (1964).
http://dx.doi.org/10.2514/3.55086
2.
2. D. B. DeBra, APL Tech. Digest 12(2), 1426 (1973).
3.
3. Staff Space Department, John Hopkins University Applied Physics Laboratory and Staff Guidance and Control Laboratory, Stanford University, AIAA J. Spacecr. 11(9), 637644 (1974).
http://dx.doi.org/10.2514/3.62146
4.
4. J. P. Turneaure et al., Adv. Space Res. 9, 29 (1989).
http://dx.doi.org/10.1016/0273-1177(89)90005-7
5.
5. J. Beaussier et al., IAF Paper No. 76–099, ONERA T.P. 1976–128, 1976.
6.
6. S. Anza et al., Class. Quantum Grav. 22(10), S125S138 (2005).
http://dx.doi.org/10.1088/0264-9381/22/10/001
7.
7. LISA Study Team, LISA Pre Phase A Report (Max-Plank-Institut fur Quantenoptik, Garching, Germany, 1998).
8.
8. K. Danzmann and A. Rudiger, Class. Quantum Grav. 20, S1S9 (2003).
http://dx.doi.org/10.1088/0264-9381/20/10/301
9.
9. P. Worden, Ph.D. thesis, Department of Physics, Stanford University, 1976.
10.
10. D. Adam, Nature (London) 416(6876), 1011 (2002).
http://dx.doi.org/10.1038/416010a
11.
11. D. B. DeBra, AIP Conf. Proc. 456, 199206 (1998).
http://dx.doi.org/10.1063/1.57412
12.
12.LISA feasibility study final technical report,” ESA Contract No. 13631/99/NL/MS, Report No. LI-RP-DS-009, Astrium, 2000.
13.
13. B. L. Schumaker, “Disturbance reduction requirements for LISA,” Class. Quantum Grav. 20, S239S253 (2003).
http://dx.doi.org/10.1088/0264-9381/20/10/327
14.
14. K. X. Sun, G. Allen, S. Buchman, D. Debra, and R. Byer, “Advanced gravitational reference sensor for high precision space interferometers,” Class. Quantum Grav. 22(10), S287S296 (2005).
http://dx.doi.org/10.1088/0264-9381/22/10/021
15.
15. K. X. Sun, S. Buchman, R. Byer, D. DeBra, J. Goebel, G. Allen, J. W. Conklin, D. Gerardi, S. Higuchi, N. Leindecker, P. Lu, A. Swank, E. Torres, and M. Trittler, “Modular gravitational reference sensor development,” J. Phys.: Conf. Ser. 154, 012026 (2009).
http://dx.doi.org/10.1088/1742-6596/154/1/012026
16.
16. K. X. Sun, G. Allen, S. Buchman, R. L. Byer, J. W. Conklin, D. B. DeBra, D. Gill, A. Goh, S. Higuchi, P. Lu, N. A. Robertson, and A. J. Swank, in Proceedings of the 6th International LISA Symposium on Laser Interferometer Space Antenna, American Institute of Physics Conference Series Vol. 873 (AIP, 2006), pp. 515521.
17.
17. J. Hanson, G. MacKeiser, S. Buchman, R. L. Byer, D. Lauben, D. DeBra, S. Williams, D. Gill, B. Shelef, and G. Shelef, “ST-7 gravitational reference sensor: Analysis of magnetic noise sources,” Class. Quantum Grav. 20, S109S116 (2003).
http://dx.doi.org/10.1088/0264-9381/20/10/313
18.
18. U. Johann, F. Gath, W. Holota, H. Schulte, and D. Weise, “Novel payload architectures for LISA,” in Proceedings of the 6th International LISA Symposium, NASA Goddard Space Flight Center, Greenbelt, MD, 2006.
19.
19. J. Baker and J. Centrella, “Impact of LISA's low-frequency strain sensitivity on observations of massive black-hole mergers,” Class. Quantum Grav. 22, S355S362 (2005).
http://dx.doi.org/10.1088/0264-9381/22/10/029
20.
20. W. J. Bencze, D. B. DeBra, L. Herman, T. Holmes, M. Adams, G. M. Keiser, and C. W. F. Everitt, “On-orbit performance of the gravity probe B drag-free translation system,” in Proceedings of the 29th Annual AAS GNC 2006 (Guidance and Navigation Conference), AAS 06–083, Breckenridge, CO, USA, 4–8 February 2006.
21.
21. B. Lange, “Managing spherical proof masses in a drag-free satellite with application to the LISA mission,” Class. Quantum Grav. 18(19), 41534158 (2001).
http://dx.doi.org/10.1088/0264-9381/18/19/325
22.
22. B. Lange, “Preliminary studies of spherical proof masses in LISA drag-free satellites,” in Proceedings of the International Conference on Astronomical Telescopes and Instrumentation, August 2002, see http://www.dragfreesatellite.com.
23.
23. D. Gerardi, “Advanced drag-free concepts for future space-based interferometers,” Ph.D. thesis, University of Stuttgart, Germany, 2014 and EADS Astrium, Science Missions and Systems Department, Friedrichshafen, Germany (to be submitted in partial fulfilment of the requirements for a Doctoral Degree at University of Stuttgart).
24.
24. D. Bortoluzzi, P. Bosetti, L. Carbone, A. Cavalleri, A. Ciccolella, M. Da Lio, K. Danzmann, R. Dolesi, A. Gianolio, G. Heinzel, D. Hoyland, C. D. Hoyle, M. Hueller, F. Nappo, M. Sallusti, P. Sarra, M. Te Plate, C. Tirabassi, S. Vitale, and W. J. Weber, “Testing LISA drag-free control with the LISA Technology Package flight experiment,” Class. Quantum Grav. 20, S89S97 (2003).
http://dx.doi.org/10.1088/0264-9381/20/10/311
25.
25. R. Gerndt, W. Fichter, N. Brandt, D. Gerardi, F. Montemurro, A. Schleicher, T. Ziegler, and U. Johann, “LISA technology package system design and operations,” in Proceedings of the 6th International LISA Symposium, NASA Goddard Space Flight Center, Greenbelt, MD, 2006.
26.
26. P. W. McNamara, “LISA Pathfinder,” in Proceedings of the 6th International LISA Symposium, NASA Goddard Space Flight Center, Greenbelt, MD, 2006.
27.
27. D. Bortoluzzi, L. Carbone, A. Cavalleri, M. Da Lio, R. Dolesi, C. D. Hoyle, M. Hueller, S. Vitale, and W. J. Weber, “Measuring random force noise for LISA aboard the LISA Pathfinder mission,” Class. Quantum Grav. 21, S573S579 (2004).
http://dx.doi.org/10.1088/0264-9381/21/5/028
28.
28. N. A. Robertson, “Kelvin probe measurements: Investigations of the patch effects with applications to ST-7 and LISA,” Class. Quantum Grav. 23, 26652680 (2006).
http://dx.doi.org/10.1088/0264-9381/23/7/026
29.
29. J. W. Conklin, “Estimation of the Mass Center and Dynamics of a Spherical Test Mass for Gravitational Reference Sensors,” Ph.D. thesis, Stanford University, USA (December 2008).
30.
30. G. Allen, K. X. Sun, and R. Byer, “Using an optical fiber fed Littrow cavity as a displacement sensor for use in drag-free satellites,” AIP Conf. Proc. 873, 334338 (2006).
http://dx.doi.org/10.1063/1.2405064
31.
31. J. W. Conklin, G. Allen, K-X. Sun, and D. B. DeBra, “Determination of spherical test mass kinematics with a modular gravitational reference sensor,” J. Guidance, Control, Navigation 31(6), 17001707 (2008).
http://dx.doi.org/10.2514/1.34230
32.
32. G. Allen, Ph.D. thesis, Department of Applied Physics, Stanford University, 2009.
33.
33. K. X. Sun, U. Johann, D. DeBra, S. Buchman, and R. L. Byer, “LISA gravitational reference sensors,” J. Phys.: Conf. Ser. 60, 272275 (2007).
http://dx.doi.org/10.1088/1742-6596/60/1/059
34.
34. P. L. Bender, “Proof mass acceleration due to temperature fluctuations,” in Proceedings of the 6th International LISA Symposium, NASA Goddard Space Flight Center, Greenbelt, MD, 2006.
35.
35. H. Peabody and S. M. Merkowitz, “Low-frequency thermal performance of the LISA sciencecraft,” in Proceedings of the 6th International LISA Symposium, NASA Goddard Space Flight Center, Greenbelt, MD, 2006.
36.
36. S. M. Merkowitz, “Achieving the very low end of the LISA sensitivity band,” in Proceedings of the 6th International LISA Symposium, NASA Goddard Space Flight Center, Greenbelt, MD, 2006.
37.
37. S. Vitale, M. Armano, L. Carbone, A. Cavalleri, G. Ciani, R. Dolesi, M. Hueller, D. Tombolato, and W. J. Weber, “Achieving the mid-low end of the LISA band,” in Proceedings of the 6th International LISA Symposium, NASA Goddard Space Flight Center, Greenbelt, MD, 2006.
38.
38. L. Carbone, “Characterisation of disturbance sources for LISA: Torsion pendulum results,” Class. Quantum Grav. 22, S509S519 (2005).
http://dx.doi.org/10.1088/0264-9381/22/10/051
39.
39. D. DeBra, personal communication, HEPL, Stanford University, 2007.
40.
40. G. Allen, personal communication, HEPL, Stanford University, 2007.
41.
41. S. J. Barnett, “Magnetization by rotation,” Phys. Rev. 6(4), 239270 (1915).
http://dx.doi.org/10.1103/PhysRev.6.239
42.
42. C. C. Speake and C. Trenkel, “Forces between conducting surfaces due to spatial variations of surface potentials,” Phys. Rev. Lett. 90, 160403 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.160403
43.
43. P. F. Gath, H. R. Schulte, D. Weise, and U. Johann, “Drag-free and attitude control system design for the LISA science mode,” in Proceedings of the AIAA Guidance, Navigation and Control Conference, South Carolina, 2007.
44.
44. M. Tinto and S. V. Dhurandhar, “Time-delay interferometry,” Living Rev. Relativ. 8, 4 (2005).
http://dx.doi.org/10.12942/lrr-2005-4
45.
45. J. W. Conklin, K.-X. Sun, and D. B. DeBra, “Mass center determination by optical sensing of velocity modulation,” in Proceedings of the 6th International LISA Symposium, NASA Goddard Space Flight Center, Greenbelt, MD, 2006.
46.
46. P. Gath, “DFACS design for single active (cubical) proof mass,” LISA-ASD-TN-2005, 2007.
47.
47. P. Gath, “DFACS design for LISA,” LISA-ASD-TN-2002, Issue 1.3, 2008.
48.
48. U. Johann and H. Joerck, Patent DE 100 31 542 B4 (17 February 2005).
49.
49. G. M. Keiser, S. Buchman, D. B. DeBra, and E. Gustafson, “Advantages and disadvantages of a spherical proof mass for LISA,” COSPAR Meeting Presentation, 2000.
50.
50. L. Carbone, A. Cavalleri, G. Ciani, R. Dolesi, M. Hueller, D. Tombolato, S. Vitale, and W. J. Weber, “Torsion pendulum facility for direct force measurements of LISA GRS related disturbances,” in Proceedings of the 6th International LISA Symposium, NASA Goddard Space Flight Center, Greenbelt, MD, 2006.
51.
51. A. Cavalleri, G. Ciani, R. Dolesi, M. Hueller, D. Nicolodi, D. Tombolato, P. J. Wass, W. J. Weber, S. Vitale, and L. Carbone, Class. Quantum Grav. 26(9), 094012 (2009).
http://dx.doi.org/10.1088/0264-9381/26/9/094012
52.
52. A. Cavalleri, G. Ciani, R. Dolesi, A. Heptonstall, M. Hueller, D. Nicolodi, S. Rowan, D. Tombolato, S. Vitale, P. J. Wassand, and W. J. Weber, Class. Quantum Grav. 26(9), 094017 (2009).
http://dx.doi.org/10.1088/0264-9381/26/9/094017
53.
53. A. Cavalleri, G. Ciani, R. Dolesi, M. Hueller, D. Nicolodi, D. Tombolato, S. Vitale, P. J. Wass, and W. J. Weber, “Gas damping force noise on a macroscopic test body in an infinite gas reservoir,” preprint arXiv:0907.5375v2 (2010).
54.
54. A. Cavalleri, G. Ciani, R. Dolesi, A. Heptonstall, M. Hueller, D. Nicolodi, S. Rowan, D. Tombolato, S. Vitale, P. J. Wass, and W. J. Weber, “Increased Brownian force noise from molecular impacts in a constrained volume,” Phys. Rev. Lett. 103(14), 140601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.140601
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/1/10.1063/1.4862199
Loading
/content/aip/journal/rsi/85/1/10.1063/1.4862199
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/85/1/10.1063/1.4862199
2014-01-30
2016-10-01

Abstract

Future drag-free missions for space-based experiments in gravitational physics require a Gravitational Reference Sensor with extremely demanding sensing and disturbance reduction requirements. A configuration with two cubical sensors is the current baseline for the Laser Interferometer Space Antenna (LISA) and has reached a high level of maturity. Nevertheless, several promising concepts have been proposed with potential applications beyond LISA and are currently investigated at HEPL, Stanford, and EADS Astrium, Germany. The general motivation is to exploit the possibility of achieving improved disturbance reduction, and ultimately understand how low acceleration noise can be pushed with a realistic design for future mission. In this paper, we discuss disturbance reduction requirements for LISA and beyond, describe four different payload concepts, compare expected strain sensitivities in the “low-frequency” region of the frequency spectrum, dominated by acceleration noise, and ultimately discuss advantages and disadvantages of each of those concepts in achieving disturbance reduction for space-based detectors beyond LISA.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/85/1/1.4862199.html;jsessionid=EFGsvBDA2Vh-ZdOMAZtIQGno.x-aip-live-02?itemId=/content/aip/journal/rsi/85/1/10.1063/1.4862199&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/85/1/10.1063/1.4862199&pageURL=http://scitation.aip.org/content/aip/journal/rsi/85/1/10.1063/1.4862199'
Right1,Right2,Right3,